Перспективы развития и декарбонизации цементной промышленности мира

Авторы

  • И.А. Башмаков Центр энергоэффективности − XXI век, Россия, 117418, г. Москва, ул. Новочеремушкинская, д. 61

DOI:

https://doi.org/10.21513/2410-8758-2023-1-33-64

Ключевые слова:

Мировая цементная промышленность, декарбониза- ция, прогнозы, парниковые газы, технологии.

Аннотация

В статье рассмотрены тенденции и прогнозные оценки разви-
тия мировой цементной промышленности и основные направления ее декар-
бонизации. В 2019-2020 гг. на производство цемента в мире пришлось более
3 ГтСО2экв., или 17% всех выбросов парниковых газов (ПГ) от промышлен-
ности и 5% всех глобальных антропогенных выбросов ПГ. Показано, что глу-
бокая декарбонизация цементной промышленности возможна в основном за
счет снижения материалоемкости, замещения клинкера другими материа-
лами, а также за счет масштабного применения технологии CCUS. Для реше-
ния задачи декарбонизации при минимальных затратах нужно использовать
широкий пакет технологий. Однако, только небольшая часть задачи глубокой
декарбонизации цементной промышленности решается на счет уже широко
используемых на рынке технологий. Прогресс в коммерциализации и удешев-
лении инновационных технологий будет определять реальные временные гра-
ницы декарбонизации мировой цементной промышленности.

Библиографические ссылки

Башмаков, И.А. (2021) Выбросы парниковых газов от мировой черной

металлургии: прошлое, настоящее и будущее, Черная металлургия. Бюлле-

тень научно-технической и экономической информации, т. 77, № 8, с. 882-

Башмаков И.А. (2022) Углеродное регулирование в ЕС и российский

сырьевой экспорт, Вопросы экономики, № 1, с. 90-109, электронный ресурс,

URL: https://doi.org/10.32609/0042-8736-2022-1-90-109.

Andrew, R.M. (2019) Global CO2 emissions from cement production, 1928-

, Earth Syst. Sci. Data, vol. 11, pp. 1675-1710.

Bataille, C. (2020) Low and zero emissions in the steel and cement industries:

barriers, technologies and policies, OECD Green Growth Papers, OECD 2020/02,

OECD Publishing.

Bashmakov et al. (2022) Climate Change 2022. Mitigation of Climate

Change. Contribution of Working Group III to the IPCC Sixth Assessment Report

(AR6), in Skea, J. et al. (eds.), Cambridge University Press, Cambridge, United

Kingdom and New York, NY, USA.

BEE (2018) Improving Energy Efficiency in Cement Sector (Achievements

and Way Forward), Bureau of Energy Efficiency (BEE), Ministry of Power, Govt.

of India, and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)

GmbH, New Delhi, September 2018.

Bleischwitz, R., Nechifor, V., Winning, M., Huang, B., Geng, Y. (2018)

Extrapolation or saturation – Revisiting growth patterns, development stages and

decoupling, Glob. Environ. Chang., vol. 48, pp. 86-96, available at: https://doi.org/

1016/J.GLOENVCHA.2017.11.008.

Cai B., Wang, J., He, J., Geng, Yong (2016) Evaluating CO2 emission

performance in China’s cement industry: An enterprise perspective, Applied

Energy, vol. 166, pp. 191-200, available at: https://doi.org/10.1016/j.apenergy.

11.006.

Cao, Z., Shen, L., Løvik, A.N., Müller, D.B., Liu, G. (2017) Elaborating the

History of Our Cementing Societies: An in-Use Stock Perspective, Environ. Sci.

Technol., vol. 51(19), pp. 11468-11475, doi:10.1021/acs.est.7b03077.

Cao, Z. et al. (2020) The sponge effect and carbon emission mitigation

potentials of the global cement cycle, Nat. Commun., vol. 11(1), p. 3777,

doi:10.1038/s41467-020-17583-w.

CEMBUREAU (2020) Cementing the European Green Deal, 07 p., available

at: https://cembureau.eu/media/kuxd32gi/cembureau-2050-roadmap_final-version_

web.pdf.

Chen, C. et al. (2022) A striking growth of CO2 emissions from the global

cement industry driven by new facilities in emerging countries, Environ. Res. Lett.,

vol. 17, 044007, available at: https://doi.org/10.1088/1748-9326/ac48b5.

Climate Action Tracker (2020) Paris Agreement Compatible Sectoral

Benchmark, 67 p., available at: https://climateactiontracker.org/documents/753/

CAT_2020-07.

Crippa, M. et al. (2021) EDGAR v6.0 Greenhouse Gas Emissions, Eur.

Comm. Jt. Res. Cent. [Dataset], doi:http://data.europa.eu/89h/97a67d67-c62e-

-b873-9d972c4f670b.

GCCA (2021a) GNR – GCCA in Numbers, available at: https://

gccassociation.org/sustainability-innovation/gnr-gcca-in-numbers/, accessed

August 27, 2021.

Hertwich, E.G. et al. (2019) Material efficiency strategies to reducing

greenhouse gas emissions associated with buildings, vehicles, and electronics ‒ A

review, Environ. Res. Lett., vol. 14(4), 043004, doi:10.1088/1748-9326/ab0fe3.

EC (2021) COMMISSION STAFF WORKING DOCUMENT, Towards

competitive and clean European steel, Accompanying the Communication from

the Commission to the European Parliament, the Council, the European

Economic and Social Committee and the Committee of the Regions Updating the

New Industrial Strategy: Building a stronger Single Market for Europe's

recovery {COM(2021) 350 final} - {SWD(2021) 351 final} - {SWD(2021) 352

final}.

ECRA (European Cement Research Academy) and Cement Sustainability

Initiative (CSI) (2017), Development of State of the Art Techniques in Cement

Manufacturing: Trying to Look Ahead, ECRA, Düsseldorf and Geneva, available

at: www.wbcsdcement.org/technology.

GCCA (2021a) GNR – GCCA in Numbers, available at: https://gccassociation.

org/sustainability-innovation/gnr-gcca-in-numbers/, accessed August 27,

GCCA (2021b) The GCCA 2050 Cement and Concrete Industry Roadmap for

Net Zero Concrete, London, UK, 46 p., available at: https://gccassociation.org/concretefuture/

wp-content/uploads/2021/10/GCCA-Concrete-Future-Roadmap-Document-

AW.pdf.

Guo, R. et al. (2021) Global CO2 uptake by cement from 1930 to 2019, Earth

Syst. Sci. Data, vol. 13(4), pp. 1791-1805, doi:10.5194/essd-13-1791-2021.

IEA (2018) Technology Roadmap – Low-Carbon Transition in the Cement

Industry, Paris, available at: https://www.iea.org/reports/technology-roadmap-lowcarbon-

transition-in-the-cement-industry, Cement – Analysis - IEA.

IEA (2019) Material efficiency in clean energy transitions, OECD, Paris,

France, 158 p., available at: https://www.statista.com/statistics/267364/worldcement-

production-by-country/.

IEA (2020a) Energy Technology Perspective 2020, Paris, 397 p.

IEA (2020b) Tracking industry 2020, available at: https://www.iea.org/

reports/tracking-industry-2020, accessed December 20, 2020.

IEA (2021a) Net Zero by 2050. A Roadmap for the Global Energy Sector.

IEA, 2019, Material efficiency in clean energy transitions, OECD, Paris, France,

p., available at: https://www.statista.com/statistics/267364/world-cementproduction-

by-country/.

IEA (2021b) World energy balances, available at: https://www.iea.org/dataand-

statistics/data-product/world-energy-balances, accessed October 29, 2020.

IEA (2021c) Iron and Steel. Technology Roadmap. Towards more sustainable

steelmaking.

IEA (2021d) CO2 Emissions from Fuel Combustion online data service,

available at: data.iea.org/payment/products/115-co2-emissions-from-fuel-combustion-

-edition.aspx, accessed August 27, 2020.

IFC (2017) Improving thermal and electric energy efficiency at cement

plants: international best practice, International Finance Corporation, available at:

https://doi.org/10.1596/28304.

IPCC (2014) Climate Change 2014: Mitigation of Climate Change,

Contribution of Working Group III to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change, in Edenhofer, O. et al. (eds.),

Cambridge University Press, Cambridge, United Kingdom and New York, NY,

USA, Cambridge.

IRP (2020) Resource Efficiency and Climate Change: Material Efficiency

Strategies for a Low-Carbon Future, in Hertwich, E., Lifset, R., Pauliuk, S.,

Heeren, N. (eds.), A report of the International Resource Panel, United Nations

Environment Programme, Nairobi, Kenya.

Krausmann, F., Lauk, C., Haas, W., Wiedenhofer, D. (2018) From resource

extraction to outflows of wastes and emissions: The socioeconomic metabolism of

the global economy, 1900-2015, Glob. Environ. Chang., vol. 52, pp. 131-140,

doi:10.1016/j.gloenvcha.2018.07.003.

Lamb, W.F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier,

J.G.J., Wiedenhofer, D., Mattioli, G., Khourdajie, A.A., House, J., Pachauri, S.,

Figueroa, M.J., Saheb, Y., Slade, R., Hubacek, K., Sun, L., Ribeiro, S.K., Khennas,

S., de la Rue du Can, S., Chapungu, L., Davis, S.J., Bashmakov, I., Dai, H., Dhakal,

S., Tan, X., Geng, Y., Gu, B., Minx, J.C. (2021) A Review of Trends and Drivers of

Greenhouse Gas Emissions by Sector from 1990 to 2018, Environmental Research

Letters, vol. 16(7), 073005, available at: https://doi.org/10.1088/1748-9326/

abee4e.

Liao, S., Wang, D., Xia, C. et al. (2022) China’s provincial process CO2

emissions from cement production during 1993-2019, Sci Data, vol. 9, p. 165,

available at: https://doi.org/10.1038/s41597-022-01270-0.

Мaterial Economics (2019) Industrial Transformation 2050: Pathways to

net-zero emissions from EU Heavy Industry, available at: https://materialeconomics.

com/publications/industrial-transformation-2050.

Minx, J.C. et al. (2021) Gas Emissions By Sector 1970-2019, Earth Syst. Sci.

Data, (July), pp. 1-63.

Mishra U.C., Sarsaiya, S., Gupta, A. (2022) A systematic review on the

impact of cement industries on the natural environment, Environmental Science

and Pollution Research, vol. 29, pp. 18440-18451, available at: https://doi.org/

1007/s11356-022-18672-7.

Moya, J.A., Pardo, N., Mercier, A. (2010) Energy Efficiency and CO2

Emissions – Prospective Scenarios for the Cement Industry, EUR 24592 EN, Joint

Research Centre, Institute for Energy, Luxembourg, Office for Official Publications

of the European Communities, 83 p., doi:10.2790/25732.

Sanjuan, Miguel Angel, Pedro, Mora (2020) Carbon Dioxide Uptake by

Cement-Based Materials: A Spanish Case Study, Appl. Sci., vol. 10, p. 339,

doi:10.3390/app10010339.

SINTEF Energi AS (2015) Design and performance of CEMCAP cement

plant with MEA post combustion capture, Revision 1, Project co-funded by the

European Commission within Horizon 2020.

Stripple, H., Ljungkrantz, C., Gustafsson, T., Andersson, R. (2018) CO2

uptake in cement-containing products. Background and calculation models for

IPCC implementation, 66 p.

UKCCC (2019b) Net Zero Technical Report, London, UK, 302 p., available

at: https://www.theccc.org.uk/publication/net-zero-technical-report/.

U.S. (2017) Cement Manufacturing, Office of Energy Efficiency and

Renewable Energy, U.S. Department of Energy, September 2017.

US DOE (2017) Bandwidth Study on Energy Use and Potential Energy

Savings Opportunities in U.S. Advanced High Strength Steels Manufacturing.

USGS (2021) Mineral commodity summaries 2021, U.S. Geological Survey,

Reston, Virginia.

Wiedenhofer, D., Fishman, T., Lauk, C., Haas, W., Krausmann, F. (2019)

Integrating Material Stock Dynamics Into Economy-Wide Material Flow

Accounting: Concepts, Modelling, and Global Application for 1900-2050, Ecol.

Econ., vol. 156, pp. 121-133, doi:10.1016/j.ecolecon.2018.09.010.

Worrell E., Price, L., Martin, N., Hendriks, C., Ozawa Meida, L. (2001)

Carbon Dioxide Emissions From The Global Cement Industry, Annu. Rev. Energy

Environ., vol. 26, pp.303-329.

Worrell, E., Kermeli, K., Galitsky, C. (2013) Energy Efficiency Improvement

and Cost Saving Opportunities for Cement Making, EPA.

Xi, F., Davis, S.J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C., Shi, T.,

Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang, K.-H., Lagerblad, B.,

Galan, I., Andrade, C., Zhang, Y., Liu, Z. (2016) Substantial global carbon uptake

by cement carbonation, Nature Geosci., vol. 9, 880-883, available at: https://

doi.org/10.1038/ngeo2840.

Загрузки

Опубликован

2023-06-29

Как цитировать

Башмаков, И. (2023). Перспективы развития и декарбонизации цементной промышленности мира. Фундаментальная и прикладная климатология, 9(1), 33–64. https://doi.org/10.21513/2410-8758-2023-1-33-64