Природные пожары: данные наблюдений и моделирование
DOI:
https://doi.org/10.21513/2410-8758-2020-3-73-119Ключевые слова:
Природные пожары, модели Земной системы, изменения климата, спутниковые данные, эмиссии в атмосферу, углеродный баланс, аэрозоли, метан, биосферно-атмосферное взаимодействиеАннотация
Проведён обзор сведений о природных пожарах (ПП) и анализ современных подходов к моделированию ПП. Особое внимание уделено вопросам включения моделей ПП в глобальные модели Земной системы.
В последние годы по спутниковым данным появилась возможность идентификации даже небольших пожаров (с размером <500 м). Тем не менее, сохраняется значительная неопределённость оценок площади выгорания из- за ПП, а также связанных с ними эмиссий веществ в атмосферу. По наиболее представительным спутниковым данным GFED-4.1 ежегодная площадь выгорания из-за пожаров близка к 5 млн км2, в том числе не менее 2.9 млн км2 из-за собственно природных пожаров. Это приводит к эмиссиям углерода ~ 2 ПгС год-1, в основном в виде СО2. На территории России ежегодная площадь выгорания близка к 135 тыс. км2 с ежегодным выделением в атмосферу 0.12 ПгС год-1. Эти оценки заметно превышают соответствующие оценки Национального доклада о кадастре антропогенных выбросов из источников и абсорбции поглотителями парниковых газов, не регулируемых Монреальским протоколом, за 1990-2015 гг.
Характеристики ПП изменяются при межгодовых вариациях климата, в том числе в годы Эль-Ниньо. При этом по спутниковым данным для последних десятилетий на масштабах от глобального до субконтинентального значимых трендов характеристик ПП не выявлено. По прокси-данным и модельным расчётам выявляются общая интенсификация активности ПП в доиндустриальном голоцене (в том числе при похолодании климата), а также общее увеличение этой активности от холодных стадиалов плейстоцена к тёплым межстадиалам.
В настоящее время схемы расчёта характеристик ПП внедряются в модели Земной системы. Такие схемы учитывают погодные и/или климатические характеристики развития пожаров, количество возгораний в зависимости от характеристик молниевой активности и плотности населения (а иногда и от способа хозяйственной деятельности), ликвидацию (тушение) пожаров соответствующими службами, количество и тип топлива для пожаров, полноту сгорания топлива. Ряд моделей способны воспроизводить динамику отдельных пожаров в упрощённой форме. Однако недостаточность современных знаний о ПП приводит к заметному межмодельному различию даже для воспроизведения многолетних средних характеристик ПП, а также для коэффициентов тренда изменения этих характеристик. В частности, для ХХ века основные межмодельные различия в изменениях характеристик активности ПП обусловлены предположениями о влиянии землепользования на динамику ПП. Таким
образов, требуется дальнейшее развитие этих моделей и уточнение их определяющих параметров.
Библиографические ссылки
Anisimov O.A., Borshch S.V., Georgievskij V.Yu., Insarov G.E., Kobysheva N.V., Kostyanoj A.G., Krenke A.N., Semenov S.M., Sirotenko O.D., Frolov I.E., Hlebnikova E.I., Sherstyukov B.G., Ananicheva M.D., Anohin Yu.A., Asarin A.E., Asmus V.V., Bolgov M.V., Borisova O.K., Velichko A.A., Grigor'ev A.V., Gudkovich Z.M., Demchenko P.F., Karklin V.P., Karklin V.P., Kislov A.V., Klyachkin S.V., Korzuhin M.D., Krovotyncev V.A.3, Krupchatnikov V.N., Ku- deyarov V.N., Lavrov S.A., Lebedev S.A., Malkova G.V., Minin A.A., Myach L.T., Nikonova R.E., Nosenko G.A., Ol'chev A.V., Pavlov A.V., Pavlova V.N., Pavlo- va T.V., Polunin A.Ya., Popova V.V., Popova E.N., Popovnin V.V., Romanovskij V.A., Sirin A.A., Smolyanickij V.M., Speranskaya N.A., Streleckij D.A., Terziev F.S., Filippov Yu.G., Frolov S.V., Haruk V.I., Holodov A.L., Hromova T.E., Shalygin
A.L., Shiklomanov N.I., Shmakin A.B. 2012. Metody ocenki posledstvij izmeneniya klimata dlya fizicheskih i biologicheskih sistem [Climate change impact assessment methods for physical and biological systems]. Moscow, 512 p.
Bartalev S.A., Stycenko F.V., Egorov V.A., Lupyan E.A. 2015. Sputnikovaya ocenka gibeli lesov Rossii ot pozharov [Satellite assessment of the death of Russian forests from fires]. Lesovedenie – Forest Science, no. 2, pp. 83-94.
Bondur V.G., Ginzburg A.S. 2016. Emission of carbon-bearing gases and aerosols from natural fires on the territory of Russia based on space monitoring. Doklady Earth Sciences, vol. 466, no. 4, pp. 473-477. Doi:10.1134/S1028334X16020045.
Bondur V.G., Gordo K.A., Kladov V.L. 2016. Prostranstvenno-vremennye raspredeleniya ploshchadej prirodnyh pozharov i emissij uglerodsoderzhashchih gazov i aerozolej na territorii Severnoj Evrazii po dannym kosmicheskogo monitoringa [Spatio-temporal distributions of areas of natural fires and emissions of carbon-containing gases and aerosols in Northern Eurasia according to space monitoring]. Issledovanie Zemli iz kosmosa – Earth Exploration from Space, no. 6, pp. 3-20. Doi:10.7868/S0205961416060105.
Vasileva A.V. 2012. Vliyanie prirodnyh pozharov na krupnomasshtabnuyu izmenchivost' polya prizemnogo CO v Severnoj Evrazii [The effect of natural fires on the large-scale variability of the surface CO field in Northern Eurasia]. Extended abstract of Doctor’s thesis. Moscow, 155 p.
Vivchar A.V., Moiseenko K.B., Pankratova N.V. 2010. Estimates of carbon monoxide emissions from wildfires in northern Eurasia for air quality assessment and climate modeling. Izvestiya, Atmospheric and Oceanic Physics, vol. 46, no. 3, pp. 281-293. Doi:10.1134/S0001433810030023
Vinogradova A.A., Vasileva A.V. 2017. Black carbon in air over northern regions of Russia: Sources and spatiotemporal variations. Atmospheric and Oceanic Optics, vol. 30, no. 6, pp. 533-541. Doi:10.1134/S1024856017060161.
Vinogradova A.A., Smirnov N.S., Korotkov V.N., Romanovskaya A.A. 2015. Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic. Atmospheric and Oceanic Optics, vol. 28, no. 6, pp. 566-574. Doi:10.1134/S1024856015060184.
Grishin A.M. 1981. Matematicheskie modeli lesnyh pozharov [Mathematical models of forest fires]. Tomsk, 277 p.
Grishin A.M. 1992. Matematicheskie modeli lesnyh pozharov i novye sposoby bor'by s nimi [Mathematical models of forest fires and new ways to deal with them]. Novosibirsk, 408 p.
Grishin A.M. 1994. Fizika lesnyh pozharov [Physics of Forest Fire]. Tomsk, 218 p. Grishin A.M., Dolgov A.A., Zima V.P., Rejno V.V., Cvyk R.Sh. 1997.
Teplovizionnye issledovaniya razvitiya i rasprostraneniya nizovogo lesnogo pozhara [Thermal imaging studies of the development and spread of grassroots forest fire]. Optika atmosfery i okeana – Atmopsheric and Oceanic Optics, vol. 10, no. 10, pp. 1139-1150.
Eliseev A.V. 2011. Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values. Izvestiya, Atmospheric and Oceanic Physics, vol. 47, no. 2, pp. 131-153. Doi:10.1134/S0001433811030042.
Eliseev A.V. 2017. Global'nyj cikl CO2: osnovnye processy i vzaimodejstvie s klimatom [The global CO2 cycle: key processes and climate change]. Fundamental'naya i prikladnaya klimatologiya – Fundamental and Applied Climatology, vol. 4, pp. 9-31.
Eliseev A.V. 2018. Global'nyj cikl metana: obzor [Global methane cycle: A review]. Fundamental'naya i prikladnaya klimatologiya – Fundamental and Applied Climatology, vol. 1, pp. 52-70.
Eliseev A.V., Mokhov I.I., Chernokulsky A.V. 2014. Influence of ground and peat fires on CO2 emissions into the atmosphere. Doklady Earth Sciences, vol. 459, no. 2, pp. 1565-1569. Doi:10.1134/S1028334X14120034.
Eliseev A.V., Mokhov I.I., Chernokulsky A.V. 2017. The influence of lightning activity and anthropogenic factors on large-scale characteristics of natural fires. Izvestiya, Atmospheric and Oceanic Physics, vol. 53, no. 1, pp. 1-11. Doi:10.1134/ S0001433817010054.
Melekhov I.S. 1947. Priroda lesa i lesnye pozhary [Forest nature and forest fires]. Arhangelsk, 44 p.
Melekhov I.S. 1978. Lesnaya pirologiya [Forest pyrology]. Moscow, 71 p.
Mokhov I.I., Eliseev A.V. 2012. Modeling of global climate variations in the 20th-23rd centuries with new RCP scenarios of anthropogenic forcing. Doklady Earth Sciences, vol. 443, no. 6, pp. 532-536. Doi: 10.1134/S1028334X12040228.
Mokhov I.I., Eliseev A.V., Guryanov V.V. 2020. Model estimates of global and regional climate changes in the Holocene. Doklady Earth Sciences, vol. 490, no. 1, pp. 223-227. Doi 10.1134/S1028334X20010067.
Mokhov I.I., Chernokulsky A.V. 2010. Regional'nye model'nye ocenki riska lesnyh pozharov v aziatskoj chasti Rossii pri izmeneniyah klimata [Regional model risk assessments of forest fires in the Asian part of Russia with climate change]. Geografiya i prirodnye resursy – Geography and natural resources, no. 2, pp. 120-126.
NIR. 2017. National Inventory Report of anthropogenic emissions by sources and removals by sink of greenhouse gases not controlled by the Montreal Protocol. Part 1. Moscow, 471 p.
Nesterov V.G. 1949. Gorimost' lesa i metody ee opredeleniya [Forest burning and methods for its determination]. Moscow, Leningrad, 76 p.
Obyazov V.A. 2012. Effects of changes in meteorological conditions on the forest fire conditions in Zabaikal’skii krai. Russian Meteorology and Hydrology, vol. 37, no. 6, pp. 27-35. Doi:10.3103/S1068373912060039.
Ponomarev E.I., Shvecov E.G. 2013. Harakteristiki kategorij pozharov rastitel'nosti v Sibiri po dannym sputnikovyh i drugih nablyudenij [Characteristics of categories of vegetation fires in Siberia according to satellite and other observations]. Issledovanie Zemli iz kosmosa – Earth Exploration from Space, no. 5, pp. 45-54. Doi:10.7868/S0205961413050035.
Rakitin V.S., Elansky N.F., Pankratova N.V., Skorohod A.I., Dzhola A.V., Shtabkin Yu.A., Wang P., Wang G., Vasilieva A.V., Makarova M.V., Grechko E.I. 2017. Study of trends of total CO and CH4 contents over Eurasia through analysis of ground-based and satellite spectroscopic measurements. Atmospheric and Oceanic Optics, vol. 30, no. 6, pp. 517-526. Doi:10.1134/S1024856017060112.
Romanovskaya A.A., Imshennik E.V., Karaban R.T., Smirnov N.S., Korotkov V.N., Trunov A.A. 2016. Anthropogenic emissions of short-lived climate-active substances on the territory of Russia within the period from 2000 to 2013. Problems Of Ecological Monitoring And Ecosystem Modelling, vol. 27, pp. 27-48. Doi:10.21513/0207-2564-2016-1-27-48.
Smirnov N.S., Korotkov V.N., Romanovskaya A. A. 2015. Black carbon emissions from wildfires on forest lands of the Russian Federation in 2007-2012. Russian Meteorology and Hydrology, vol. 40, no. 7, pp. 435-442. Doi:10.3103/ S1068373915070018.
Sofronov M.A. 1967. Lesnye pozhary v gorah Yuzhnoj Sibiri [Forest fires in the mountains of Southern Siberia]. Moscow, 152 p.
Surkova G.V. 2002. Himiya atmosfery [Atmospheric chemistry]. Moscow, 210 p. Shvidenko A.Z., Shchepashchenko D.G. 2013. Klimaticheskie izmeneniya i lesnye pozhary v Rossii [Climate change and forest fires in Russia]. Lesovedenie –Forest Science, no. 5, pp. 50-61.
Akagi S.K., Yokelson R.J., Wiedinmyer C., Alvarado M.J., Reid J.S., Karl T., Crounse J.D., Wennberg P.O. 2011. Emission factors for open and domestic biomass burning for use in atmospheric models. – Atmospheric Chemistry and Physics, vol. 11, No. 9, pp. 4039-4072. Doi:10.5194/acp-11-4039-2011.
Alonso-Canas I., Chuvieco E. 2015. Global burned area mapping from ENVISATMERIS and MODIS active fire data. – Remote Sensing of Environment, vol. 163, pp. 140-152. Doi:10.1016/j.rse.2015.03.011.
Andela N., Morton D.C., Giglio L., Paugam R., Chen Y., Hantson S., van der Werf G.R., Randerson J.T. 2019. The Global Fire Atlas of individual fire size, duration, speed and direction. – Earth System Science Data, vol. 11, No. 2, pp. 529-552. Doi:10.5194/essd-11-529-2019.
Andreae M.O. 2019. Emission of trace gases and aerosols from biomass burning - an updated assessment. – Atmospheric Chemistry and Physics, vol. 19, No. 13, pp. 8523-8546. Doi:10.5194/acp-19-8523-2019.
Andreae M.O., Merlet P. 2001. Emission of trace gases and aerosols from biomass burning. – Global Biogeochemical Cycles, vol. 15, No. 4, pp. 955-966. Doi:10.1029/2000GB001382.
Arora V.K., Boer G.J. 2005. Fire as an interactive component of dynamic vegetation models. – Journal of Geophysical Research: Biogeosciences, vol. 110, No. G2, G02008. Doi:10.1029/2005JG000042.
Arora V.K., Boer G.J., Friedlingstein P., Eby M., Jones C.D., Christian J.R., Bonan G., Bopp L., Brovkin V., Cadule P., Hajima T., Ilyina T., Lindsay K., Tjiputra J.F., Wu T. 2013. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth System Models. – Journal of Climate, vol. 26, No. 15, pp. 5289-5314. Doi:10.1175/JCLI-D-12-00494.1.
Chen Q., Farmer D.K., Schneider J., Zorn S.R., Heald C.L., Karl T.G., Guenther A., Allan J.D., Robinson N., Coe H., Kimmel J.R., Pauliquevis T., Borrmann S., Pöschl U., Andreae M.O., Artaxo P., Jimenez J.L., Martin S.T. 2009. Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin. – Geophysical Research Letters, vol. 36, No. 20, L20806. Doi:10.1029/2009GL039880.
Climate Change 2013: The Physical Science Basis. 2013. − Сambridge/New York: Cambridge University Press, 1535 p.
Conard S.G., Ivanova G.A. 1997. Wildfire in Russian boreal forests - potential impacts of fire regime characteristics on emissions and global carbon balance estimates. – Environmental Pollution, vol. 98, No. 3, pp. 305-313. Doi:10.1016/ S0269-7491(97)00140-1.
Daniau A.-L., Harrison S.P., Bartlein P.J. 2010. Fire regimes during the Last Glacial. – Quaternary Science Reviews, vol. 29, No. 21, pp. 2918-2930. Doi:10.1016/j.quascirev.2009.11.008.
Eliseev A.V., Mokhov I.I. 2011. Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios. – Advances in Atmospheric Sciences, vol. 28, No. 5, pp. 1215-1232. Doi:10.1007/s00376-010-0054-8.
Eliseev A.V., Mokhov I.I., Chernokulsky A.V. 2014. An ensemble approach to simulate CO2 emissions from natural fires. – Biogeosciences, vol. 11, No. 12, pp. 3205-3223. Doi:10.5194/bg-11-3205-2014.
Ferek R.J., Reid J.S., Hobbs P.V., Blake D.R., Liousse C. 1998. Emission factors of hydrocarbons, halocarbons, trace gases, and particles from biomass burning in Brazil. – Journal of Geophysical Research, vol. 103, No. D24, pp. 32107-32118. Doi:10.1029/98JD00692.
Ganteaume A., Camia A., Jappiot M., San-Miguel-Ayanz J., Long-Fournel M., Lampin C. 2013. A review of the main driving factors of forest fire ignition over Europe. – Environmental Management, vol. 51, No. 3, pp. 651-662. Doi:10.1007/ s00267-012-9961-z.
Gidden M.J., Riahi K., Smith S.J., Fujimori S., Luderer G., Kriegler E., van Vuuren D.P., van den Berg M., Feng L., Klein D., Calvin K., Doelman J.C., Frank S., Fricko O., Harmsen M., Hasegawa T., Havlik P., Hilaire J., Hoesly R., Horing J., Popp A., Stehfest E., Takahashi K. 2019.
Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of armonized emissions trajectories through the end of the century. – Geoscientific Model Development, vol. 12, No. 4, pp. 1443-1475. Doi:10.5194/gmd-12-1443-2019.
Giglio L., Randerson J.T., van der Werf G.R., Kasibhatla P.S., Collatz G.J., Morton D.C., DeFries R.S. 2010. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. – Biogeosciences, vol. 7, No. 3, pp. 1171-1186. Doi:10.5194/bg-7-1171-2010.
Giglio L., Randerson J.T., van der Werf G.R. 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). – Journal of Geophysical Research: Biogeosciences, vol. 118, No. 1, pp. 317-328. Doi:10.1002/jgrg.20042.
Goldammer J.G., Furyaev V.V. 1996. Fire in ecosystems of boreal Eurasia. – Dordrecht, Kluwer Academic Publishers, 531 p.
Grishin A.M., Filkov A.I., Loboda E.L., Kuznetsov V.T., Kasymov D.P., Andreyuk S.M., Ivanov A.I., Stolyarchuk N.D., Reyno V.V., Kozlov A.V. 2014. A field experiment on grass fire effects on wooden constructions and peat layer ignition. – International Journal of Wildland Fire, vol. 23, No. 3, pp. 445-449.
Guo M., Li J., Xu J., Wang X., He H., Wu L. 2017. CO2 emissions from the 2010 Russian wildfires using GOSAT data. – Environmental Pollution, vol. 226, pp. 60-68. Doi:10.1016/j.envpol.2017.04.014.
Hantson S., Arneth A., Harrison S.P., Kelley D.I., Prentice I.C., Rabin S.S., Archibald S., Mouillot F., Arnold S.R., Artaxo P., Bachelet D., Ciais P., Forrest M., Friedlingstein P., Hickler T., Kaplan J.O., Kloster S., Knorr W., Lasslop G., Li F., Mangeon S., Melton J.R., Meyn A., Sitch S., Spessa A., van der Werf G.R., Voulgarakis A., Yue C. 2016. The status and challenge of global fire modellingю – Biogeosciences, vol. 13, No. 11, pp. 3359-3375. Doi:10.5194/bg-13-3359-2016.
Hantson S., Kelley D.I., Arneth A., Harrison S.P., Archibald S., Bachelet D., Forrest M., Hickler T., Lasslop G., Li F., Mangeon S., Melton J.R., Nieradzik L., Rabin S.S., Prentice I.C., Sheehan T., Sitch S., Teckentrup L., Voulgarakis A., Yue C. 2020. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project – Geoscientific Model Development, vol. 13, No. 7, p. 3299-3318. Doi:10.5194/gmd-13-3299-2020.
Harrison S.P., Bartlein P.J., Brovkin V., Houweling S., Kloster S., Prentice I.C. 2018. The biomass burning contribution to climate-carbon-cycle feedback. – Earth System Dynamics, vol. 9, No. 2, pp. 663-677. Doi:10.5194/esd-9-663-2018.
Holgate C.M., van Dijk A.I.J.M., Cary G.J., Yebra M. 2017. Using alternative soil moisture estimates in the McArthur Forest Fire Danger Index. – International Journal of Wildland Fire, vol. 26, No. 9, pp. 806-819. Doi:10.1071/WF16217.
Humber M.L., Boschetti L., Giglio L., Justice C.O. 2019. Spatial and temporal intercomparison of four global burned area products. – International Journal of Digital Earth, vol. 12, No. 4, pp. 460-484. Doi:10.1080/17538947.2018.1433727.
Jones M.W., Santín C., van der Werf G.R., Doerr S.H. 2019. Global fire emissions buffered by the production of pyrogenic carbon. – Nature Geosciences, vol. 12, No. 742-747. Doi:10.1038/s41561-019-0403-x.
Kasischke E.S., Hyer E.J., Novelli P.C., Bruhwiler L.P., French N.H.F., Sukhinin A.I., Hewson J.H., Stocks B.J. 2005. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. – Global Biogeochemical Cycles, vol. 19, No. 1, GB1012. Doi:10.1029/2004GB002300.
Kaufman Y.J., Justice C.O., Flynn L.P., Kendall J. D., Prins E.M., Giglio L., Ward D.E., Menzel W. P., Setzer A.W. 1998. Potential global fire monitoring from EOS-MODIS. – Journal of Geophysical Research: Atmospheres, vol. 103, No. D24, pp. 32215-32238. Doi:10.1029/98JD01644.
Kloster S., Lasslop G. 2017. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. − Global and Planetary Change, vol. 150, pp. 58-69. Doi:10.1016/j.gloplacha.2016.12.017.
Kloster S., Mahowald N.M., Randerson J.T., Lawrence P.J. 2012. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. – Biogeosciences, vol. 9, No. 1, pp. 509-525. Doi:10.5194/bg-9-509-2012.
Kloster S., Mahowald N.M., Randerson J.T., Thornton P.E., Hoffman F.M., Levis S., Lawrence P.J., Feddema J.J., Oleson K.W., Lawrence D.M. 2010. Fire dynamics during the 20th century simulated by the Community Land Model. – Biogeosciences, vol. 7, No. 6, pp. 1877-1902. Doi:10.5194/bg-7-1877-2010.
Konovalov I.B., Beekmann M., Kuznetsova I.N., Yurova A., Zvyagintsev A.M. 2011. Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region. – Atmopsheric Chemistry and Physics, vol. 11, No. 11, pp. 10031-10056. Doi:10.5194/acp-11-10031-2011.
Lasslop G., Brovkin V., Reick C.H., Bathiany S., Kloster S. 2016. Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. − Geophysical Research Letters, vol. 43, No. 12, pp. 6324-6331. Doi:10.1002/2016GL069365.
Lasslop G., Coppola A.I., Voulgarakis A., Yue C., Veraverbeke S., 2019. Influence of fire on the carbon cycle and climate. – Current Climate Change Reports, vol. 5, No. 2, pp. 112-123. Doi:10.1007/s40641-019-00128-9.
Lasslop G., Thonicke K., Kloster S. 2014. SPITFIRE within the MPI Earth system model: Model development and evaluation. – Journal of Advances in Modeling Earth Systems, vol. 6, No. 3, pp. 740-755. Doi:10.1002/2013MS000284.
Lawrence D.M., Fisher R.A., Koven C.D., Oleson K.W., Swenson S.C., Bonan G., Collier N., Ghimire B., van Kampenhout L., Kennedy D., Kluzek E., Lawrence P.J., Li F., Li H., Lombardozzi D., Riley W.J., Sacks W.J., Shi M., Vertenstein M., Wieder W.R., Xu C., Ali A.A., Badger A.M., Bisht G., van den Broeke M., Brunke M.A., Burns S.P., Buzan J., Clark M., Craig A., Dahlin K., Drewniak B., Fisher J.B., Flanner M., Fox A.M., Gentine P., Hoffman F., Keppel-Aleks G., Knox R., Kumar S., Lenaerts J., Leung L.R., Lipscomb W.H., Lu Y., Pandey A., Pelletier J.D., Perket J., Randerson J.T., Ricciuto D.M., Sanderson B.M., Slater A., Subin Z.M., Tang J., Thomas R.Q., Val Martin M., Zeng X. 2019. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. – Journal of Advances in Modeling Earth Systems, vol. 11, No. 12, pp. 4245-4287. Doi:10.1029/2018MS001583.
Li F., Lawrence D.M. 2017. Role of fire in the global land water budget during the twentieth century due to changing ecosystems. – Journal of Climate, vol. 30, No. 6, pp. 1893-1908. Doi:10.1175/JCLI-D-16-0460.1.
Li F., Lawrence D.M., Bond-Lamberty B. 2017. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. – Environmental Research Letters, vol. 12, No. 4, p. 044014. Doi:10.1088/1748-9326/aa6685.
Li F., Zeng X.D., Levis S. 2012. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model. – Biogeosciences, vol. 9, No. 7, pp. 2761-2780. Doi:10.5194/bg-9-2761-2012.
Liu Z., Ballantyne A.P., Cooper L.A. 2018. Increases in land surface temperature in response to fire in Siberian boreal forests and their attribution to biophysical processes. – Geophysical Research Letters, vol. 45, No. 13, pp. 6485-6494. Doi:10.1029/2018GL078283.
Mangeon S., Voulgarakis A., Gilham R., Harper A., Sitch S., Folberth G. 2016. INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model. – Geoscientific Model Development, vol. 9, No. 8, pp. 2685-2700. Doi:10.5194/ gmd-9-2685-2016.
Marlon J.R., Bartlein P.J., Carcaillet C., Gavin D.G., Harrison S.P., Higuera P.E., Joos F., Power M.J., Prentice I.C. 2008. Climate and human influences on global biomass burning over the past two millennia. – Nature Geosciences, vol. 1, No. 10, pp. 697-702. Doi:10.1038/ngeo313.
Marlon J.R., Kelly R., Daniau A.-L., Vannière B., Power M.J., Bartlein P., Higuera P., Blarquez O., Brewer S., Brücher T., Feurdean A., Romera G.G., Iglesias V., Maezumi S.Y., Magi B., Courtney Mustaphi C.J., Zhihai T. 2016. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons. – Biogeosciences, vol. 13, No. 11, pp. 3225-3244. Doi:10.5194/bg-13-3225-2016.
McArthur A.G. 1967. Fire behaviour in eucalypt forests. – Canberra, Commonwealth of Australia, 36 p.
Mezuman K., Tsigaridis K., Faluvegi G., Bauer S.E. 2020. The interactive global fire module pyrE (v1.0) – Geoscientific Model Development, vol. 13, No. 7, pp. 3091-3118. Doi:10.5194/gmd-13-3091-2020.
Pechony O., Shindell D.T. 2009. Fire parameterization on a global scale. – Journal of Geophysical Research: Atmospheres, vol. 114, No. D16, D16115. Doi:10.1029/2009JD011927.
Pellegrini A.F.A., Ahlström A., Hobbie S.E., Reich P.B., Nieradzik L.P., Staver A.C., Scharenbroch B.C., Jumpponen A., Anderegg W.R.L., Randerson J.T., Jackson R.B. 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. – Nature, vol. 553, No. 7687, pp. 194-198. Doi:10.1038/nature24668.
Pfeiffer M., Spessa A., Kaplan J.O. 2013. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). – Geoscientific Model Development, vol. 6, No. 3, pp. 643-685. Doi:10.5194/gmd-6-643-2013
Power M.J., Marlon J., Ortiz N., Bartlein P.J., Harrison S.P., Mayle F.E., Ballouche A., Bradshaw R.H.W., Carcaillet C., Cordova C., Mooney S., Moreno P.I., Prentice I.C., Thonicke K., Tinner W., Whitlock C., Zhang Y., Zhao Y., Ali A.A., Anderson R.S., Beer R., Behling H., Briles C., Brown K.J., Brunelle A., Bush M., Camill P., Chu G.Q., Clark J., Colombaroli D., Connor S., Daniau A.-L., Daniels M., Dodson J., Doughty E., Edwards M.E., Finsinger W., Foster D., Frechette J., Gaillard M.-J., Gavin D.G., Gobet E., Haberle S., Hallett D.J., Higuera P., Hope G., Horn S., Inoue J., Kaltenrieder P., Kennedy L., Kong Z.C., Larsen C., Long C.J., Lynch J., Lynch E.A., McGlone M., Meeks S., Mensing S., Meyer G., Minckley T., Mohr J., Nelson D.M., New J., Newnham R., Noti R., Oswald W., Pierce J., Richard P.J.H., Rowe C., Sanchez Goñi M.F., Shuman B.N.,
Takahara H., Toney J., Turney C., Urrego-Sanchez D.H., Umbanhowar C., Vandergoes M., Vanniere B., Vescovi E., Walsh M., Wang X., Williams N., Wilmshurst J., Zhang J.H. 2015. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. – Climate Dynamics, vol. 30, No. 7-8, pp. 887-907. Doi:10.1007/s00382-007-0334-x.
Randerson J.T., Chen Y., van der Werf G.R., Rogers B.M., Morton D.C. 2012. Global burned area and biomass burning emissions from small fires. – Journal Geophysical Research: Biogeosciences, vol. 117, No. G4, G04012. Doi:10.1029/2012JG002128.
Romanovskaya A.A., Korotkov V.N., Polumieva P.D., Trunov A.A., Vertyanki- na V.Yu., Karaban R.T. 2020. Greenhouse gas fluxes and mitigation potential for managed lands in the Russian Federation – Mitigation and Adaptation Strategies for Global Change, vol. 25, No. 4, pp. 661- 687. Doi:10.1007/s11027-019-09885-2.
Rothermel R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. – Ogden: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station. 40 p.
Roy D.P., Jin Y., Lewis P.E., Justice C.O. 2005. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. – Remote Sensing of Environment, vol. 7, No. 2, p. 137-162. Doi:10.1016/j.rse.2005.04.007.
Seiler W., Crutzen P.J. 1980. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. – Climatic Change, vol. 2, No. 3, pp. 207-247. Doi:10.1007/BF00137988.
Soja A.J., Cofer W.R., Shugart H.H., Sukhinin A.I., Stackhouse P.W., McRae D.J., Conard S.G. 2004. Estimating fire emissions and disparities in boreal Siberia (1998-2002). – Journal of Geophysical Research, vol. 109, No. D14, D14S06. Doi:10.1029/2004JD004570.
Stocks B.J., Mason J.A., Todd J.B., Bosch E.M., Wotton B.M., Amiro B.D., Flannigan M.D., Hirsch K.G., Logan K.A., Martell D.L., Skinner W.R. 2002. Large forest fires in Canada, 1959-1997. – Journal Geophysical Research: Atmospheres, vol. 107, No. D1, 8149. Doi:10.1029/2001JD000484.
Sullivan A.L. 2009а. Wildland surface fire spread modelling, 1990-2007. 1: Physical and quasi-physical models. – International Journal Wildland Fire, vol. 18, No. 4, pp. 349-368. Doi:10.1071/WF06143
Sullivan A.L. 2009b. Wildland surface fire spread modelling, 1990-2007. 2: Empirical and quasi-empirical models. – International Journal Wildland Fire, vol. 18, No. 4, pp. 369-386. Doi:10.1071/WF06142
Sullivan A.L. 2009c. Wildland surface fire spread modelling, 1990-2007. 3: Simulation and mathematical analogue models. – International Journal Wildland Fire, vol. 18, No. 4, pp. 387-403. Doi:10.1071/WF0614.
Tansey K., Grégoire J., Defourny P., Leigh R., Pekel J., van Bogaert E., Bartholomé E. 2008. A new, global, multi-annual (2000-2007) burnt area product at 1 km resolution. – Geophysical Research Letters, vol. 35, No. 1, L01401. Doi:10.1029/2007GL031567.
Teckentrup L., Harrison S.P., Hantson S., Heil A., Melton J.R., Forrest M., Li F., Yue C., Arneth A., Hickler T., Sitch S., Lasslop G. 2019. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. – Biogeosciences, vol. 16, No. 19, pp. 3883-3910. Doi:10.5194/bg-16-3883-2019.
Thonicke K., Spessa A., Prentice I.C., Harrison S.P., Dong L., Carmona- Moreno C. 2010. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. – Biogeosciences, vol. 6, pp. 1991-2011. Doi:10.5194/bg-7-1991-2010.
Thonicke K., Venevsky S., Sitch S., Cramer W. 2001. The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetaion Model. – Global Ecology and Biogeography, vol. 10, No. 6, pp. 661-677. Doi:10.1046/j.1466-822X.2001.00175.x.
van der Werf G.R., Randerson J.T., Collatz G.J., Giglio L., Kasibhatla P.S., Arellano A.F., Olsen S.C., Kasischke E.S. 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niñо/La Niña period. – Science, vol. 303, No. 5654, pp. 73-76. Doi:10.1126/science.1090753.
van der Werf G.R., Randerson J.T., Giglio L., Collatz G.J., Mu M., Kasib- hatla P.S., Morton D.C., DeFries R.S., Jin Y., van Leeuwen T.T. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). – Atmospheric Chemistry and Physics, vol. 10, No. 23, pp. 11707-11735. Doi:10.5194/acp-10-11707-2010.
van der Werf G.R., Randerson J.T., Giglio L., van Leeuwen T.T., Chen Y., Rogers B.M., Mu M., van Marle M.J.E., Morton D.C., Collatz G.J., Yokelson R.J., Kasibhatla P.S. 2017. Global fire emissions estimates during 1997-2016. – Earth System Science Dynamics, vol. 9, No. 2, pp. 697-720. Doi:10.5194/essd-9-697-2017.
Vasileva A.V., Moiseenko K.B., Mayer J.-C., Jurgens N., Panov A., Heimann M., Andreae M.O. 2011. Assessment of the regional atmospheric impact of wildfire emissions based on CO observations at the ZOTTO tall tower station in central Siberia. – Journal of the Geophysical Research: Atmopsheres. vol. 116, No. D7, D07301. Doi:10.1029/2010JD014571.
Vasileva A., Moiseenko K. 2013. Methane emissions from 2000 to 2011 wildfires in Northeast Eurasia estimated with MODIS burned area data. – Atmospheric Environment, vol. 71, pp. 115-121. Doi:10.1016/j.atmosenv.2013.02.001.
Venevsky S., Thonicke K., Sitch S., Cramer W. 2002. Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case study. – Global Change Biology, vol. 8, No. 10, pp. 984-998. Doi:10.1046/j.1365-2486.2002.00528.x.
Vivchar A. 2011. Wildfires in Russia in 2000-2008: estimates of burnt areas using the satellite MODIS MCD45 data. – Remote Sensing Letters, vol. 2, No. 1, pp. 81-90. Doi:10.1080/01431161.2010.499138.
Whelan R.J. 1995. The ecology of fire. – Cambridge, Cambridge University Press, Cambridge, 346 p.
Yokelson R.J., Christian T. J., Karl T. G., Guenther A. 2008. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. – Atmospheric Chemistry and Physics, vol. 8, No. 13, pp. 3509-3527. Doi:10.5194/acp-8-3509-2008.
Yue C., Ciais P., Cadule P., Thonicke K., Archibald S., Poulter B., Hao W.M., Hantson S., Mouillot F., Friedlingstein P., Maignan F., Viovy N. 2014. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 1: simulating historical global burned area and fire regimes. – Geoscientific Model Development, vol. 7, No. 6, pp. 2747-2767. Doi:10.5194/gmd-7-2747-2014.