Методы управления солнечной радиацией: основные характеристики, потенциал и возможные последствия

Авторы

  • А. П. Ревокатова Институт глобального климата и экологии Ю.А. Израэля, ФГБУ «Гидрометцентр России»
  • В. А. Гинзбург Институт глобального климата и экологии Ю.А. Израэля, ФГБУН Институт географии РАН

DOI:

https://doi.org/10.21513/2410-8758-2021-3-50-83

Аннотация

Реферат. Управление солнечной радиацией (УСР) – один из подходов к геоинженерной стабилизации климата. Методы УСР относятся к технологиям, призванным изменить альбедо Земли для увеличения отражения приходящей солнечной радиации. Несмотря на то, что сейчас количество научных работ в мире по методам УСР растет в геометрической прогрессии, в России эти технологии остаются малоизвестными и непопулярными. Статья призвана собрать воедино основные свойства предлагаемых методов УСР, рассмотреть возможные схемы их применения и оценить степень серьезности возможных побочных эффектов, базируясь на последней научной литературе. В статье рассмотрены методы стратосферных аэрозолей (СА), осветления морских облаков, уменьшения толщины перистых облаков. Проведено сравнение методов
УСР по температурному отклику и эффективности, техническим аспектам применения методов и возможности их реализации. Рассмотрено воздействие методов УСР на климатическую систему с точки зрения региональных изменений климатических параметров, изменения в ресурсах для солнечной энергии, последствий резкого прекращения применения методов УСР. Проведен обзор возможных сценариев применения методов УСР. Среди методов УСР наиболее значимое влияние на глобальную среднюю температуру могут оказать метод СА и метод осветления морских облаков. Проведен обзор исследований возможных негативных последствий, связанных с изменением тропосферной и стратосферной циркуляции, уменьшением стратосферного озона, резкого отклика всех климатических параметров на внезапное прерывание метода, возможностей их корректировки, а также современных подходов к применению УСР предлагающих «частичное» или «умеренное» применение технологий, для уменьшения возможных последствий. Показано, что в последнее время появляются новые подходы к оценке возможных климатических последствий применения СА и их соотношение с возможными климатическими выгодами, например, сравнение климатических изменений в результате применения УСР и без него в разных районах Земли, с учетом количества проживающего там населения. В целом в статье сделан акцент на необходимость оценки потенциальных угроз от УСР совместно с выявляемыми положительными эффектами для каждого региона в отдельности, в зависимости от количества населения и потенциальных угроз для него.

Библиографические ссылки

Будыко, М.И. (1974) Метод воздействия на климат, Метеорология и гидро-

логия, № 2, с. 91-97.

Гинзбург, В.А., Кострыкин, С.В., Рябошапко, А.Г., Ревокатова, А.П., Буш-

мелев, И.О. (2020) Условия стабилизации средней глобальной приповерх-

ностной температуры на уровнях +2 и +1.5°С при использовании

геоинженерного метода на основе стратосферных аэрозолей, Метеорология и

гидрология, № 5, c. 66-76.

Ревокатова, А.П., Рябошапко, А.Г. (2015) Технические возможности созда-

ния аэрозольного слоя в стратосфере с целью стабилизации климата, Про-

блемы экологического мониторинга и моделирования экосистем, т. XXVI, №

, с. 115-127.

Ревокатова, А.П., Рябошапко, А.Г. (2013) Ранжирование степени угроз нега-

тивных побочных эффектов применения геоинженерии климата, Проблемы

экологического мониторинга и моделирования экосистем, т. XXV, с. 9-28.

Ahlm, L., Jones, A., Stjern, C.W., Muri, H., Kravitz, B., Kristjánsson, J.E.

(2017) Marine cloud brightening – as effective without clouds, Atmos. Chem. Phys.

Discuss., doi:10.5194/acp-2017-484.

Akbari, H., Matthews, H.D., Seto, D. (2012) The long-term effect of increasing

the albedo of urban areas, Environ. Res. Lett., vol. 7, 24004, doi:10.1088/1748-

/7/2/024004.

Alterskjær, K., Kristja´nsson, J.E., Boucher, O., Muri, H., Niemeier, U.,

Schmidt, H., Schulz, M., Timmreck, C. (2013) Sea-salt injections into the lowlatitude

marine boundary layer: The transient response in three Earth system

models, J. Geophys. Res. Atmos., vol. 118, pp. 12,195-12,206, doi:10.1002/

JD020432.

Angel, R. (2006) Feasibility of cooling the Earth with a cloud of small

spacecraft near the inner Lagrange point (L1), Proc. Natl. Acad. Sci. U.S.A., vol.

, pp. 17184-17189, doi:10.1073/pnas.0608163103.

Aquila, V., Garfinkel, C., Newman, P., Oman, L., Waugh, D. (2014)

Modifications of the quasi-biennial oscillation by a geoengineering perturbation of

the stratospheric aerosol layer, Geophys. Res. Lett., vol. 41, pp. 1738-1744.

Aswathy, V.N., Boucher, O., Quaas, M., Niemeier, U., Muri, H., Mülmenstädt,

J., Quaas, J. (2015) Climate extremes in multi-model simulations of stratospheric

aerosol and marine cloud brightening climate engineering, Atmos. Chem. Phys.,

vol. 15, pp. 9593-9610, available at: www.atmos-chem-phys.net/15/9593/2015/

doi:10.5194/acp-15-9593-2015.

Bala, G., Caldeira, K., Nemani, R., Cao, L., Ban-Weiss, G., Shin, H.-J. (2011)

Albedo enhancement of marine clouds to counteract global warming: Impacts on the

hydrological cycle, Clim. Dyn., vol. 37, pp. 915-931, doi:10.1007/s00382-010-0868-1.

Bernstein, D.N., Neelin, J.D., Li, Q.B., Chen, D. (2013) Could aerosol

emissions be used 669 for regional heat wave mitigation? Atmospheric Chemistry

and Physics, vol. 13(13), pp. 6373-6390, available at: https://doi.org/10.5194/acp-

-6373-2013.

Boucher, O., Forster, P.M., Gruber, N., Ha-Duong, M., Lawrence, M.G., Lenton,

T.M., Maas, A., Vaughan, N.E. (2013) Rethinking climate engineering

categorization in the context of climate change mitigation and adaptation, WIRES,

Clim. Change, doi: 10.1002/wcc.261.

Butler, A.H., Thompson, D.W., Heikes, R. (2010). The steady‐sate atmospheric

circulation response to climate change‐like thermal forcings in a simple general

circulation model, Journal of Climate, vol. 23(13), pp. 3474-3496, available at:

https://doi.org/10.1175/2010JCLI3228.1.

Chen, Y., Xin, Y., (2017) Implications of geoengineering under the 1.5°C target:

Analysis and policy suggestions, Advances in Climate Change Research, available

at: http://dx.doi.org/10.1016/j.accre.2017.05.003.

Crook, J., Jackson, L.S., Osprey, S.M., Forster, P.M. (2015) A comparison of

temperature and precipitation responses to different Earth radiation management

geoengineering schemes, J. Geophys. Res., vol. 120, doi:10.1002/2015JD023269.

Crutzen, P.J. (2006) Albedo Enhancement by Stratospheric Sulfur Injections: A

Contribution to Resolve a Policy Dilemma? Clim. Change, vol. 77, pp. 211-220,

doi:10.1007/s10584-006-9101-y, available at: http://link.springer.com/10.1007/

s10584-006-9101-y.

Curry, C.L., Sillmann, J., Bronaugh, D., Alterskjaer, K., Cole, J.N.S., Ji, D.,

Kravitz, B., Kristjánsson, J.E., Moore, J.C., Muri, H. et al. (2014) A multi-model

examination of climate extremes in an idealized geoengineering experiment. J.

Geophys. Res. Atmos., vol. 119, pp. 3900-3923, doi:10.1002/2013JD020648.

Davidson, P., Burgoyne, C., Hunt, H., Causier, M. (2011) Lifting options for

stratospheric aerosol geoengineering: advantages of tethered balloon systems,

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. A370, pp. 4263-4300,

doi:10.1098/rsta.2011.0639.

Davin, E.L., Seneviratne, S.I., Ciais, P., Olioso, A., Wang, T. (2014) Preferential

cooling of hot extremes from cropland albedo management, Proceedings of the

National Academy of Sciences, vol. 111(27), pp. 9757-9761, available at: https://

doi.org/10.1073/pnas.1317323111.

Dykema, J.A., Keith, D.W., Keutsch, F.N. (2016) Improved aerosol radiative

properties as a foundation for solar geoengineering risk assessment, Geophys. Res.

Lett., vol. 43, pp. 7758-7766, doi:10.1002/2016GL069258.

English, J.M., Toon, O.B., Mills, M.J. (2012) Microphysical simulations of

sulfur burdens from stratospheric sulfur geoengineering, Atmos. Chem. Phys., vol.

, pp. 4775-4793, doi:10.5194/acp-12-4775-2012.

Ferraro, A.J., Highwood, E.J., Charlton-Perez, A.J. (2014) Weakened tropical

circulation and reduced precipitation in response to geoengineering, Environ. Res.

Lett., vol. 9, 14001, doi:10.1088/1748-9326/9/1/014001, available at: http://

stacks.iop.org/1748-9326/9/i=1/a=014001?key=crossref.878d5812d41285f5514acaa-

e63c3.

Harding, A.R., Ricke, K., Heyen, D. et al. (2020) Climate econometric models

indicate solar geoengineering would reduce inter-country income inequality, Nat.

Commun., vol. 11, p. 227, available at: https://doi.org/10.1038/s41467-019-13957-x.

Irvine, P., Emanuel, K., He, J. et al. (2019) Halving warming with idealized

solar geoengineering moderates key climate hazards, Nat. Clim. Chang., vol. 9, pp.

-299, available at: https://doi.org/10.1038/s41558-019-0398-8.

Irvine, P., Keith, D. (2020) Halving warming with stratospheric aerosol

geoengineering moderates policy-relevant climate hazards, Environ. Res. Lett., vol.

, 044011.

Irvine, P.J., Ridgwell A., Lunt, D.J. (2011) Climatic effects of surface albedo

geoengineering, J. Geophys. Res. Atmos., vol. 116, doi:10.1029/2011JD016281.

Irvine, P.J., Kravitz, B., Lawrence, M.G., Muri, H. (2016) An overview of the

Earth system science of solar geoengineering, Wiley Interdiscip. Rev. Clim. Chang.,

vol. 7, pp. 815-833, doi:10.1002/wcc.423.

Irvine, P. et al. (2017) Towards a comprehensive climate impacts assessment of

solar geoengineering, Earth’s Future, vol. 5, pp. 93-106, doi:10.1002/eft2.174.

Irvine, P.J., Ridgwell, A., Lunt, D.J. (2011) Climatic effects of surface albedo

geoengineering, J. Geophys. Res., vol. 116, D24112.

Izrael, Y.A., Volodin, E.M., Kostrykin, S.V., Revokatova, A.P., Ryaboshapko,

A.G. (2014) The ability of stratospheric climate engineering in stabilizing global

mean temperatures and an assessment of possible side effects, Atmos. Sci. Lett.,

vol. 15, pp. 140-148, doi:10.1002/asl2.481.

Jacobson, M.Z., Ten Hoeve, J.E. (2012) Effects of urban surfaces and white

roofs on global and regional climate, J. Clim., vol. 25, pp. 1028-1044, doi:10.1175/

JCLI-D-11-00032.1.

Jones, A., Haywood, J. Boucher, O. (2009) Climate impacts of geoengineering

marine stratocumulus clouds, J. Geophys. Res., vol. 114, doi:10.1029/

JD011450.

Jones, A., Haywood, J.M. (2012) Sea-spray engineering in the HadGEM2-ES

earth-system model: radiative impact and climate response, Atmos. Chem. Phys.,

vol. 12, pp. 10887-10898, doi:10.5194/acp-12-10887-2012.

Jones, A., et al. (2013), The impact of abrupt suspension of solar radiation

management (termination effect) in experiment G2 of the Geoengineering Model

Intercomparison Project (GeoMIP), J. Geophys. Res. Atmos., vol. 118, pp. 9743-

, doi:10.1002/jgrd.50762.

Kashimura, H., Abe, M., Watanabe, S., Sekiya, T., Ji, D., Moore, J.C., Cole,

J.N.S., Kravitz, B. (2017) Shortwave radiative forcing, rapid adjustment, and

feedback to the surface by sulfate geoengineering: analysis of the Geoengineering

Model Intercomparison Project G4 scenario, Atmos. Chem. Phys., vol. 17, pp.

-3356, available at: www.atmos-chem-phys.net/17/3339/2017/ doi:10.5194/

acp-17-3339-2017.

Keith, D.W., MacMartin, D.G. (2015). A temporary, moderate and responsive

scenario for solar geoengineering, Nature Climate Change, vol. 5(3), pp. 201-206,

available at: https://doi.org/10.1038/nclimate2493.

Keith, D.W., Irvine, P.J. (2016) Solar geoengineering could substantially reduce

climate risks a research hypothesis for the next decade, Earth’s Futur., vol. 4,

EF000465, doi:10.1002/2016EF000465.

Kravitz B., MacMartin D.G., Alan Robock et al. (2014) A multi-model

assessment of regional climate disparities caused by solar geoengineering,

Environ. Res. Lett., vol. 9, 074013.

Kravitz, B., MacMartin, D. G., Mills, M. J., Richter, J. H., Tilmes, S., Lamarque,

J.-F., Vitt, F. (2017) First simulations of designing stratospheric sulfate aerosol

geoengineering to meet multiple simultaneous climate objectives, Journal of

Geophysical Research: Atmospheres, vol. 122, pp. 12,616-12,634, available at:

https://doi.org/10.1002/2017JD026874.

Kravitz, B., Caldeira, K., Boucher, O., Robock, A., Rasch, P.J., Alterskjær,

K.,Yoon, J.-H. (2013). Climate model response from the Geoengineering Model

Intercomparison Project (GeoMIP), Journal of Geophysical Research: Atmospheres,

vol. 118, pp. 8320-8332, available at: https://doi.org/10.1002/jgrd.50646.

Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K.E., Stenchikov, G.,

Schulz, M. (2011) The Geoengineering Model Intercomparison Project (GeoMIP),

Atmos. Sci. Lett., vol. 12, pp. 162-167.

Laakso, A. et al. (2012) Stratospheric passenger flights are likely an inefficient

geoengineering strategy, Environ. Res. Lett., vol. 7, 034021.

Laakso, A., Kokkola, H., Partanen, A.-I., Niemeier, U., Timmreck, C., Lehtinen,

K.E.J. et al. (2016). Radiative and climate impacts of a large volcanic eruption

during stratospheric sulfur geoengineering, Atmospheric Chemistry and Physics,

vol. 16(1), pp. 305-323.

Latham, J. et al. (2012) Marine cloud brightening, Phil. Trans. Royal Soc., vol.

A 370, pp. 4217-4262.

Latham, J., Parkes, B., Alan, G., Salter, S. (2012) Weakening of hurricanes via

marine cloud brightening, Atmos. Sci. Let., vol. 13, pp. 231-237.

Latham, J. (2002) Amelioration of global warming by controlled enhancement

of the albedo and longevity of low-level maritime clouds, Atmos. Sci. Lett., vol. 3,

p. 52, doi:10.1006/asle.2002.0048.

Latham, J. (1990) Control of global warming? Nature, vol. 347, pp. 339-340,

available at: https://doi.org/10.1038/347339b0.

Latham, J., Rasch, P., Chen, C.-C.J., Kettles, L., Gadian, A., Gettelman, A.,

Morrison, H., Bower, K., Choularton, T. (2008) Global temperature stabilization

via controlled albedo enhancement of low-level maritime clouds, Phil. Trans. R.

Soc., vol. A366, pp. 3969-3987, doi:10.1098/rsta.2008.0137.

Latham, J., Gadian, A., Fournier, J., Parkes, B., Wadhams, P., Chen, J. (2014)

Marine cloud brightening: regional applications, Philos. Trans. A. Math. Phys. Eng.

Sci., vol. 372, 20140053, doi:10.1098/rsta.2014.0053.

Lunt, D.J., Ridgwell, A., Valdes, P.J., Seale, A. (2008) “Sunshade World”: a

fully coupled GCM evaluation of the climatic impacts of geoengineering, Geophys.

Res. Lett., vol. 35, L12710, doi:10.1029/2008gl033674.

MacMartin, D.G., Kravitz, B., Tilmes, S., Richter, J.H., Mills, M.J., Lamarque,

J.-F., Tribbia, J.J., Vitt, F. (2017). The climate response to stratospheric aerosol

geoengineering can be tailored using multiple injection locations, Journal of

Geophysical Research: Atmospheres, vol. 122, pp. 12,574-12,590, available at:

https://doi.org/10.1002/2017JD026868.

MacMartin, D.G., Ricke, K.L., Keith, D.W. (2018) Solar Geoengineering as part

of an overall strategy for meeting the 1.5°C Paris target, Phil. Trans. R. Soc.,

A.37620160454, doi: https://doi.org/10.1098/rsta.2016.0454.

Malik, A., Nowack, P.J., Haigh, J.D., Cao, L., Atique, L., Plancherel, Y. (2020)

Tropical Pacific climate variability under solar geoengineering: impacts on ENSO

extremes, Atmos. Chem. Phys., vol. 20, pp. 15461-15485, available at: https://

doi.org/10.5194/acp-20-15461-2020.

McClellan, J., Keith, D.W., Apt, J. (2012) Cost analysis of stratospheric albedo

modification delivery systems, Environ. Res. Lett., vol. 7, 034019.

Mills, M.J., Richter, J.H., Tilmes, S., Kravitz, B., MacMartin, D.G., Glanville,

A.A., Kinnison, D.E. (2017) Radiative and chemical response to interactive

stratospheric sulfate aerosols in fully coupled CESM1(WACCM), Journal of

Geophysical Research: Atmospheres, vol. 122, pp. 13,061-13,078, available at:

https://doi.org/10.1002/ 2017JD027006.

Mitchell, D.L., Finnegan, W. (2009), Modification of cirrus clouds to reduce

global warming, Environ. Res. Lett., vol. 4, 045102, doi:10.1088/1748-9326/4/4/

Muri, H., Kristjánsson, J.E., Storelvmo, T., Pfeffer, M.A. (2014) The climatic

effects of modifying cirrus clouds in a climate engineering framework, J. Geophys.

Res. Atmos., vol. 119, pp. 4174-4191, doi:10.1002/2013JD021063.

Niemeier, U., Schmidt, H. (2017). Changing transport processes in the strato397

sphere by radiative heating of sulfate aerosols, Atmospheric Chemistry and

Physics, vol. 17 (24), pp. 14871-14886, available at: https://www.atmos-chemphys.

net/17/14871/2017/doi: 10.5194/acp-17-14871-2017.

Niemeier, U., Schmidt, H., Alterskjaer, K., Kristjánsson, J.E. (2013) Solar

irradiance reduction via climate engineering: Impact of different techniques on the

energy balance and the hydrological cycle, J. Geophys. Res.-Atmos., vol. 118, pp.

,905-11,917, doi:10.1002/2013JD020445.

O’Neill, B.C., Tebaldi, C., Van Vuuren, D.P., Eyring, V., Friedlingstein, P.,

Hurtt, G. et al. (2016) The Scenario Model Intercomparison Project (ScenarioMIP)

for CMIP6. Geoscientific Model Development, vol. 9(9), pp. 3461-3482, available

at: https://doi.org/10.5194/gmd-9-3461-2016.

Pitari, G., Genova, G.D., Mancini, E., Visioni, D., Gandol, I., Cionni, I. (2016)

Stratospheric aerosols from major volcanic eruptions: A composition-climate

model study of the aerosol cloud dispersal and e-folding time, Atmosphere,

available at: http://www.scopus.com/inward/record.url?eid=2s2.04976884421{&}

partnerID=MN8TOARS, doi: 10.3390/atmos7060075.

Revokatova, A., Coninck, H., Forster, P., Ginzburg, V., Kala, J., Liverman, D.,

Plazzotta, M., Seferian, R., Seneviratne, S.I., Sillmann, J. (2018) Solar Radiation

Modification in the Context of 1.5°C Mitigation Pathways, Global warming of

5°C, An IPCC Special Report on the impacts of global warming of 1.5°C above

pre-industrial levels and related global greenhouse gas emission pathways, in the

context of strengthening the global response to the threat of climate change,

sustainable development, and efforts to eradicate poverty, in V. Masson-Delmotte,

P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-

Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I.

Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.), Ch. 4, Crosschapter

box 10, pp. 349-351.

Reynolds, J.L., Parker, A., Irvine, P. (2016) Five solar geoengineering tropes

that have outstayed their welcome, Earth’s Futur, doi:10.1002/2016EF000416.

Richter, J.H., Tilmes, S., Mills, M.J., Tribbia, J.J., Kravitz, B., Macmartin, D.G.,

Lamarque, J.F. (2017) Stratospheric dynamical response and ozone feedbacks in

the presence of SO2 injections, Journal of Geophysical Research: Atmospheres,

vol. 122 (23), 12,557-12,573, doi: 10.1002/2017JD026912.

Robock, A. (2014) Stratospheric aerosol geoengineering, Geoeng Clim Sys, vol.

, pp. 162-185.

Robock, A. (2000) Volcanic eruptions and climate, Reviews of Geophysics, vol.

(2), pp. 191-219, available at: https://agupubs.onlinelibrary.wiley.com/doi/ abs/

1029/1998RG000054, doi: 10.1029/1998RG000054.

Robock, A. (2008), 20 reasons why geoengineering may be a bad idea, Bull. At.

Sci., vol. 64, pp. 14-18, doi:10.2968/064002006.

Robrecht, S., Vogel, B., Tilmes, S., Müller, R. (2021) Potential of future

stratospheric ozone loss in the midlatitudes under global warming and sulfate

geoengineering, Atmos. Chem. Phys., vol. 21, pp. 2427-2455, available at: https://

doi.org/10.5194/acp-21-2427-2021.

Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C.,

Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R., Vilariño, M.V.

(2018) Mitigation pathways compatible with 1.5°C in the context of sustainable

development, Global warming of 1.5°C, An IPCC Special Report on the impacts of

global warming of 1.5°C above pre-industrial levels and related global greenhouse

gas emission pathways, in the context of strengthening the global response to the

threat of climate change, sustainable development, and efforts to eradicate poverty, in

V. Masson-Delmotte, P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A.

Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y.

Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)

Salter Stephen, Sortino Graham, Latham John (2008) Sea-going hardware for

the cloud albedo method of reversing global warming, Phil. Trans. R. Soc., vol.

A366, pp. 3989-4006, doi:10.1098/rsta.2008.0136.

Schäfer, S. et al. (2013) Field tests of solar climate engineering, Nature Climate

Change, vol. 3, p. 766.

Seidel, Dian J., Feingold Graham, Jacobso, Andrew R., Loeb Norman (2014) Detection

limits of albedo changes induced by climate engineering, Nature Climate

Change, vol. 4, issue 3, p. 228.

Seneviratne, S.I., Phipps, S.J., Pitman, A.J. et al. (2018) Land radiative management

as contributor to regional-scale climate adaptation and mitigation, Nature Geosci., vol.

, pp. 88-96, available at: https://doi.org/10.1038/s41561-017-0057-5.

Schmidt, H. et al. (2012) Solar irradiance reduction to counteract radiative

forcing from a quadrupling of CO2: Climate responses simulated by four Earth

system models, Earth Syst. Dyn., vol. 3, pp. 63-78.

Tilmes, S., Muller, R., Salawitch, R. (2008) The sensitivity of polar ozone

depletion to proposed geoengineering schemes, Science, vol. 320, pp. 1201-1204,

doi:10.1126/science.1153966.

Tilmes, S., Sanderson, B.M., O’Neill, B.C. (2016), Climate impacts of

geoengineering in a delayed mitigation scenario, Geophys. Res. Lett., vol. 43,

doi:10.1002/2016GL070122.

Tilmes, S., MacMartin, D.G., Lenaerts, J.T.M., van Kampenhout, L.,

Muntjewerf, L., Xia, L., Harrison, C.S., Krumhardt, K.M., Mills, M.J., Kravitz, B.,

Robock, A. (2020) Reaching 1.5 and 2.0°C global surface temperature targets using

stratospheric aerosol geoengineering, Earth Syst. Dynam., vol. 11, pp. 579-601,

available at: https://doi.org/10.5194/esd-11-579-2020.

Tilmes, S., Richter, J.H., Mills, M.J., Kravitz, B., MacMartin, D.G., Vitt, F.,

Lamarque, J.-F. (2017). Sensitivity of aerosol distribution and climate response to

stratospheric injection locations. Journal of Geophysical Research: Atmospheres,

, available at: https://doi.org/10.1002/2017JD026888.

Tilmes, S., Richter, J.H., Kravitz, B., MacMartin, D.G., Mills, M.J., Simpson,

I.R. et al. (2018) CESM1(WACCM) Stratospheric Aerosol Geoengineering Large

Ensemble Project, Bulletin of the American Meteorological Society, vol. 99(11), pp.

-2371.

Visioni, D., Pitari, G., Aquila, V. (2017a) Sulfate geoengineering: review of the

factors controlling the needed injection of sulfur dioxide, Atmos. Chem. Phys., vol.

, pp. 3879-3889, available at: www.atmos-chem-phys.net/17/3879/2017/

doi:10.5194/acp-17-3879-2017.

Visioni, D., Pitari, G., Aquila, V., Tilmes, S., Cionni, I., Di Genova, G., Mancini,

E. (2017b) Sulfate geoengineering impact on methane transport and life- time:

results from the geoengineering model intercomparison project (GeoMip),

Atmospheric Chemistry and Physics, vol. 17 (18), pp. 11209-11226, doi: 10.5194/

acp-17-11209-2017.

Visioni, D., Simpson, I.R., MacMartin, D.G., Richter, J.H., Kravitz B., Lee W.

(2020) Reduced poleward transport due to stratospheric heating under

geoengineering, Geophysical Research Letters, vol. 47, e2020GL089470,

doi:10.1029/2020GL089470.

Wang, H., Rasch, P.J., Feingold, G. (2011) Manipulating marine stratocumulus

cloud amount and albedo: A process-modelling study of aerosol-cloudprecipitation

interactions in response to injection of cloud condensation nuclei,

Atmos. Chem. Phys., vol. 11, pp. 4237-4249, doi:10.5194/acp-11-4237-2011.

Waugh, D.W., Sobel, A.H., Polvani, L.M. (2017). What is the polar vortex and

how does it inuence weather? Bulletin of the American Meteorological Society, vol.

(1), pp. 37-44, doi: 10.1175/BAMS-D-15-00212.1.

Yin, J.H. (2005) A consistent poleward shift of the storm tracks in simulations

of XXIst century climate, Geophysical Research Letters, 32, L18701, available at:

https://doi.org/10.1029/2005GL023684.

Загрузки

Опубликован

2021-11-25

Как цитировать

Ревокатова, А. П. ., & Гинзбург, В. А. (2021). Методы управления солнечной радиацией: основные характеристики, потенциал и возможные последствия. Фундаментальная и прикладная климатология, 7(3), 50–83. https://doi.org/10.21513/2410-8758-2021-3-50-83