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Реферат. Представлен обзор методов сезонного климатического про-
гнозирования. Прослежена эволюция прогностических методов  от ранних
эмпирико-статистических подходов, основанных на выявлении устойчивых
связей в климатической системе, до современных сложных динамических и
динамико-статистических моделей, включая методы искусственного интел-
лекта. Особое внимание уделяется роли ключевых климатических процес-
сов, таких как Эль-Ниньо  Южное колебание, колебание Маддена–
Джулиана, состояние влажности почвы и арктических морских льдов, как
основных источников предсказуемости на сезонных масштабах. Рассмо-
трена концепция «окон возможностей»  периодов, когда влияние этих фак-
торов на региональную циркуляцию максимально, что позволяет повысить
точность прогнозов. Описаны компоненты современной системы сезонного
прогнозирования, включая генерацию ансамблей оперативных и ретроспек-
тивных прогнозов, использование мультимодельных подходов для оценки и
снижения неопределенности, а также методы верификации. Освещена
инфраструктура Всемирной метеорологической организации, в частности,
роль глобальных центров долгосрочных прогнозов и региональных клима-
тических центров, таких как Северо-Евразийский климатический центр, в
адаптации глобальных прогностических продуктов к региональным усло-
виям. Отдельно обсуждаются вопросы разработки специализированных
прогностических продуктов для ключевых секторов экономики, а также
перспективные направления развития, включая прогнозирование на основе
воздействий (impact-based forecasting).
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Abstract. This article provides a review of methods of seasonal climate
forecasting. The evolution of forecasting techniques is traced  from early
empirical-statistical approaches, based on identifying stable relationships within
the climate system, to modern complex dynamic and hybrid models, including
artificial intelligence methods. Special emphasis is placed on the role of key
climate processes, such as El Niño–Southern Oscillation (ENSO), the Madden–
Julian Oscillation, the state of the soil moisture, and Arctic sea ice, as primary
sources of predictability on seasonal timescales. The concept of "windows of
opportunity"   periods when the influence of these factors on regional circulation
is maximized, thereby enhancing forecast accuracy  is considered. The
components of a modern seasonal forecasting system are described, including the
generation of ensembles of operational and retrospective (hindcast) forecasts, the
use of multi-model approaches to assess and reduce uncertainty, and methods for
objective verification. The infrastructure of the World Meteorological Organization
is outlined, particularly the role of Global Producing Centres and Regional Climate
Centres, such as the North Eurasian Climate Centre, in adapting global forecast
products to regional and national conditions. The development of specialized
forecast products for key economic sectors is discussed separately. Promising
development directions, including impact-based forecasting, are also examined.

Keywords. Seasonal forecasting, climate models, ENSO, sources of
predictability, windows of opportunity, multi-model forecasts, North Eurasian
Climate Centre, forecast verification, impact-based forecasting.

Введение

Сезонные прогнозы стали неотъемлемой частью современной климати-
ческой науки и представляют ценную практическую информацию для управ-
ления адаптационными мерами в условиях изменяющегося климата и
участившихся экстремальных погодных явлений (Gettelman et al., 2023;
Hewitt,  Moufouma-Okia, 2023). Их развитие стало возможным благодаря зна-
чительному прогрессу в системах сбора информации, развитии климатиче-
ского моделирования, более глубоком понимании физических процессов
климатической системы и совершенствовании вычислительных технологий
(Doblas-Reyes et al., 2013; Vitart et al., 2017).
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Истоки сезонного прогнозирования относятся к концу XIX века, когда, в
ответ на разрушительный голод в Индии, были предприняты первые попытки
оценки муссонных осадков на предстоящий сезон. Эти ранние методы долго-
срочных прогнозов в большинстве случаев основывались на выявлении кор-
реляционных зависимостей между различными климатическими
параметрами (например, снежный покров в Гималаях и количество осадков
на равнинных территориях).

Научный прорыв в исследуемой области ознаменовался работами Гил-
берта Уокера (Walker, 1923, 1924). В начале XX века, в 1923 и 1924 годах,
Уокер внедрил и усовершенствовал статистические методы анализа гидроме-
теорологических данных, благодаря которым удалось выявить ключевые кли-
матические явления, включая Южное колебание. Развитие численного
прогноза погоды, начатое в 1950-х годах (Charney et al., 1950), заложило
основу для динамического прогнозирования метеорологических условий раз-
личной заблаговременности. Ключевым прорывом стало углубление понима-
ния связи между океаном и атмосферой, во многом благодаря работам Якоба
Бьеркнеса (Bjerknes, 1969). Обнаруженная им тесная взаимосвязь между
Южным колебанием и явлением Эль-Ниньо впоследствии привела к форми-
рованию целостной концепции ЭНЮК (Эль-Ниньо  Южное колебание).
Данная концепция, подтвержденная и развитая в дальнейших исследованиях
(McPhaden et al., 1998; Philander, 1986; Rasmusson, Carpenter, 1982), продол-
жает считаться одним из важнейших факторов глобальной климатической
предсказуемости.

Гидрометцентр России и Главная геофизическая обсерватория им. А.И. Во-
ейкова на протяжении десятилетий являются ведущими научными организа-
циями Росгидромета в области изучения погоды и климата, играя ключевую
роль в развитии методов сезонного прогнозирования в стране. Исторически
становление этих методов опиралось на несколько научных школ. Основы
были заложены выдающимися учёными Б.П. Мультановским и С.Т. Пагавой
(Пагава и др., 1966), предложившими новые подходы к макросиноптическому
анализу. Важный вклад внесли Г.Я. Вангенгейм (1952) и А.А. Гирс (1974),
разработавшие макроциркуляционный метод долгосрочного прогноза на
основе классификации крупномасштабных атмосферных процессов. Парал-
лельно формировалось синоптико-статистическое направление, основопо-
ложниками которого выступили Н.А. Багров, Д.А. Педь (Багров и др., 1985),
М.И. Юдин, А.В. Мещерская, Ш.А. Мусаелян, А.И. Угрюмов (2006),
Р.М. Вильфанд и др. (Батырева и др., 1995). Их последователи значительно
углубили понимание статистических закономерностей региональных атмос-
ферных процессов. Вероятностные методы были выведены на новый уровень
трудами Г. В. Грузы и Э.Я. Раньковой (1981). Их вклад заключался не только в
разработке новых прогностических подходов, но и в создании формализован-
ной системы оценки их эффективности.

Зарождение динамического направления в метеорологии было положено
фундаментальными работами А.А. Фридмана в начале XX века. Значитель-
ный прорыв в его развитии осуществил И. А. Кибель, предложивший методо-
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логию, основанную на гипотезе геострофичности. Этот формализм позволил
адаптировать уравнения гидротермодинамики для задач прогноза погоды и
заложить теоретический фундамент для перехода к более сложным негео-
строфическим моделям. Принципиальный прорыв произошёл в конце 1950-х
годов, когда Е.Н. Блинова разработала первую полную теоретическую модель
общей циркуляции атмосферы, доказав возможность долгосрочного прогно-
зирования гидродинамическими методами (Блинова, 1976). Этот успех стал
отправной точкой для исследований С.Л. Белоусова, А. Л. Каца и других учё-
ных. Особое место в развитии динамических методов занимают работы
В.П. Дымникова, В.Н. Лыкосова (Дымников и др., 2022), Е.М. Володина
(2017), В.П. Мелешко (Мирвис, Мелешко, 2008, 2020), М.А. Толстых и др.
(Толстых и др., 2015, 2017). Их исследования позволили принципиально усо-
вершенствовать и развить современные прогностические модели.

Методы сезонного прогнозирования можно разделить на три основные
категории. Эмпирические (синоптико-статистические) методы, основанные
на корреляциях между различными климатическими параметрами на истори-
ческих данных предикторов и предиктантов (например, Багров и др., 1985;
Угрюмов, 2006, Батырева и др., 1995), остающимися популярными до настоя-
щего времени благодаря своей относительной простоте и низким вычисли-
тельным требованиям. Однако они имеют существенные ограничения,
особенно при работе с нелинейными процессами и новыми климатическими
режимами на фоне происходящих климатических изменений. Динамические
методы, использующие сложные численные модели климатической системы,
позволяют учитывать взаимодействие между атмосферой, океаном и другими
компонентами системы через систему физико-математических уравнений
(например, Мирвис,  Мелешко, 2008, 2020; Толстых и др., 2015, 2017; Воло-
дин, 2017). Третье направление  динамико-статистические подходы, сочета-
ющие преимущества первых двух методов посредством статистической
интерпретации выходных данных динамических моделей (например, Виль-
фанд и др., 2010, 2017, 2024; Хан и др., 2011).

В рамках деятельности Гидрометцентра России/Северо-Евразийского
климатического центра (СЕАКЦ), в ходе работы создаются и внедряются в
оперативную практику динамические (Киктев и др., 2015; Толстых и др.,
2015, 2017; Фадеев и др., 2021), статистические и комбинированные гидроди-
намико-статистические методы (Муравьев и др., 1999; Вильфанд и др., 2017;
Хан и др., 2011), позволяющие выпускать прогнозы на сроки от месяца и
более.

Благодаря этому наследию и постоянному развитию методологий кли-
матического прогнозирования, Гидрометцентр России/Северо-Евразийский
климатический центр сохранет позиции на мировом уровне ВМО (Всемирная
метеорологическая организация) в качестве глобального центра по долго-
срочным прогнозам (ГЦДП) и регионального климатического центра (РКЦ)
(Крыжов, 2012; Киктев и др., 2015).

Одной из основных проблем сезонного прогнозирования остается огра-
ниченная предсказуемость, обусловленная хаотичностью атмосферных про-
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цессов (Anderson, 2008; Hoskins, Schopf, 2008; Крыжов, 2012; Вильфанд и
соавт., 2010, 2017; Цепелев, Хан, 2015, Киктев, Куликова, Круглова, 2015a,b).
Для учета этой неопределенности используются ансамблевые прогнозы, в
основе которых заложен многократный прогон модели с небольшими вариа-
циями начальных условий. Разброс между отдельными членами ансамбля
дает оценку вероятности различных сценариев развития климатической ситу-
ации (Anderson, 2008; Hoskins, Schopf, 2008).

В последние годы бурное развитие получили методы машинного обуче-
ния и нейронных сетей в методах метеорологического кратко- и среднесроч-
ного прогнозирования (Bi et al., 2023; Chen et al., 2024; de Burgh-Day,
Leeuwenburg, 2023). Интеграция методов искусственного интеллекта в прогно-
стические схемы способствует улучшению качества и детализации прогнозов.
Новые технологии позволяют моделям учитывать большее количество пере-
менных и лучше справляться с неопределенностью прогнозов. Исследование
Кента и его коллег (Kent et al., 2025) показало, что модель машинного обучения
ACE2, изначально созданная для краткосрочных прогнозов, успешно конкури-
рует с ведущими климатическими динамическими моделями в задаче сезон-
ного прогнозирования. Показано, что ACE2, будучи обученной исключительно
на данных реанализа ERA5 и используя простые граничные условия  инерци-
онные аномалии температуры поверхности океана, демонстрирует успешность,
сопоставимую с ведущей динамической моделью Метофиса GloSea. Модель не
только успешно воспроизводит влияние на глобальную циркуляцию основного
источника сезонной предсказуемости  Эль-Ниньо, но и демонстрирует стати-
стически значимый сигнал в прогнозировании Северо-Атлантического колеба-
ния (САК). Перспективы моделей машинного обучения типа ACE2 связаны с
их высокой вычислительной эффективностью. Это не только открывает воз-
можность создания сверхбольших ансамблей для успешной оценки вероятно-
сти рисков экстремальных явлений, но и сулит прорыв в прогнозировании
климата за счёт синергии с традиционными динамическими моделями и навер-
няка приведёт к созданию более продвинутых гибридных систем (Chen et al.,
2024; de Burgh-Day, Leeuwburg, 2023).

Источники предсказуемости 
на сезонных интервалах времени

Методы прогнозирования на базе моделей общей циркуляции атмос-
феры часто оказываются неэффективными на сезонных и более масштабах
времени из-за принципиально иных физических механизмов предсказуемо-
сти. В отличие от краткосрочных прогнозов, где качество прогнозов во мно-
гом определяется начальными условиями, климатические прогнозы требуют
учёта медленно меняющихся компонентов системы, таких как температура
поверхности океана (например, Полонский, 2001), состояние деятельного
слоя суши, криосферы, океанических течений, стратосферных и вулканиче-
ских явлений (Maher et al., 2015; Shindell et al., 2003), и других низкочастот-
ных взаимодействий между сушей, океаном и атмосферой.
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Значительный прорыв в понимании механизмов сезонной предсказуемо-
сти произошел в 1970-х годах с открытием тесной связи между Южным коле-
банием и феноменом Эль-Ниньо (Bjerknes, 1969). Было установлено, что эти
явления представляют собой единую систему, проявляющуюся через тесную
связь между океаном и атмосферой в тропической зоне Тихого океана
(McPhaden et al., 1998; Philander, 1986; Rasmusson, Carpenter, 1982). Данное
открытие продемонстрировало, что аномалии температуры поверхности оке-
ана в тропической зоне способны оказывать влияние на климат в удалённых
регионах на сезонных масштабах (Давыдов, Полонский, 1996; Полосин, 1975;
Полонский, Башарин, 2002; Дианский, 2023). Мощный эпизод Эль-Ниньо
1982-83 гг. с его глобальными атмосферными телесвязями вывел это явление
на первый план в мировой климатологии (Воскресенская и др., 1992; Harrison
et al., 2008; Vitart et al., 2003; Wirtky et al., 1976). С этого момента начала фор-
мироваться новая «индустрия» сезонного прогнозирования от физических
основ до практического использования, включая политические аспекты
(Harrison et al., 2008; Jansen et al., 2009).

Несмотря на прогресс, многие фундаментальные вопросы, связанные с
ЭНЮК, остаются открытыми. Хотя основные физические механизмы в целом
поняты и описаны теоретическими моделями (например, затухающий осцил-
лятор и осциллятор перезарядки), до сих пор не ясно, что именно определяет
зарождение Эль-Ниньо (Burgers et al., 2005; Jin et al., 2008; Suarez, Schopf,
1988; Wang, 2001). Доказано, что предвестниками являются положительная
аномалия теплосодержания в западной части Тихого океана и эпизоды запад-
ных ветров (Gebbie et al., 2007; Tan et al., 2019), порождающие волны
Кельвина, которые переносят энергию на восток. Однако сохраняется фунда-
ментальная неопределённость, какая комбинация условий приводит к разви-
тию полномасштабного Эль-Ниньо. Также остаются нерешенными вопросы о
периодичности явления, его взаимодействии с годовым циклом, а также о
причинах разнообразия сценариев развития эпизодов Эль-Ниньо и Ла-Ниньи.

Российские исследования последних лет (Железнова и Гущина, 2015;
Гущина, Калиновская, Матвеева, 2020; Осипова и Гущина, 2021) вносят вклад
в комплексную картину механизмов формирования двух типов Эль-Ниньо.
Авторами проанализированы различия в динамике океанических процессов,
ответственных за рост аномалий ТПО при каноническом Эль-Ниньо и Эль-
Ниньо Модоки. Показано, что их эволюция и интенсивность модулируются
низкочастотной (десятилетней) изменчивостью в Тихом океане и тесно свя-
заны с внутрисезонной активностью тропической конвекции (Железнова и
др., 2024) Однако климатические модели с трудом адекватно воспроизводят
эти связи.  Работа (Matveeva et al., 2018) продемонстрировала, что лишь огра-
ниченное число моделей проекта CMIP5 способно реалистично воспроизво-
дить одновременно оба типа Эль-Ниньо и ключевые характеристики
тропической внутрисезонной изменчивости. 

Оперативное прогнозирование ЭНЮК является важнейшей практиче-
ской задачей (Luo et al., 2008). На сегодняшний день существует отлаженная
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международная система мониторинга и прогноза, координируемая ВМО и
ведущими центрами, такими как Национальный центр прогнозирования
окружающей среды США (NCEP/NOAA) и Международный исследователь-
ский институт климата и общества (IRI). Регулярно публикуемые на сайте
ВМО бюллетени под названием "El Niño/La Niña Update" служат основным
международным инструментом, обеспечивающим пользователей надежной и
своевременной информацией о состоянии и ожидаемой эволюции ЭНЮК на
основе консенсус-прогнозов по ансамблю из нескольких десятков динамиче-
ских и статистических моделей. Предшественником "El Niño/La Niña Update"
можно считать бюллетень "Climate Diagnostic Bulletin", который выпускается
Национальным центром прогнозирования окружающей среды США (NCEP/
NOAA) более 20 лет.

Оценка прогностического потенциала российской модели INM-CM5
демонстрирует её конкурентоспособность в прогнозах ЭНЮК (Реснянский и
др., 2024). Прогнозы аномалий ТПО в области NINO3-4 характеризуются
высокими значениями коэффициента корреляции (0.9-0.75) для заблаговре-
менностей 2-6 месяцев, которые снижаются до 0.6-0.4 для 7-8 месяцев. Такие
показатели соответствуют уровню ведущих мировых моделей. 

Цикл работ Лубкова и др. (2017, 2020) представляет альтернативный
подход с использованием гибридной модели на основе искусственных ней-
ронных сетей (ИНС), обеспечивающей прогноз с заблаговременностью до 21-
22 месяцев.

Однако ЭНЮК  не единственный источник сезонной предсказуемости
(Frankignoul, Sennechael, 2007). Тропические зоны Индийского и Атлантиче-
ского океанов (Зеленько и др., 1983), также генерируют предсказуемые сиг-
налы (Schott et al., 2009; Wu et al., 2007). При этом ключевая проблема
заключается в том, что предсказуемость на этих масштабах носит фрагмен-
тарный характер (например, Воробьева, Володин, 2020; Муравьев и др., 1999
a,б; Тищенко и др., 2019)  она существенно усиливается в определённые
периоды и в определённых регионах, когда в климатической системе возни-
кают особые благоприятные условия, получившие название «окон возможно-
стей» (Mariotti et al., 2020).

В формировании погодно-климатических условий средних широт клю-
чевую роль играет крупномасштабная атмосферная циркуляция (например,
Киктев и др., 2015a,b), модулируемая такими факторами, как блокирующие
антициклоны, САК, Арктическое колебание (АК) и др. В ряде работ (напри-
мер, Hurrell et al., 2003; Lamb, Peppler, 1987) показано, что отрицательная фаза
САК создаёт условия для повышенной предсказуемости. Исследование Бар-
дина (2015) частично объясняет наблюдаемую в прошлом смену знака тренда
зимних температур на территории России совместным влиянием глобального
потепления и естественной изменчивости, связанной с ключевыми атмосфер-
ными модами, такими как САК, Восточно-Атлантическая мода (ВАМ), Скан-
динавская мода (СКА) и Восточно-Атлантическая/Западно-Российская мода
(ВА/ЗР). Эти моды либо усиливали, либо ослабляли фоновое глобальное
потепление в различных регионах России.
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Особое значение при анализе масштабных экстремальных явлений уде-
ляется квазистационарным волнам Россби. Нарушая зональную циркуляцию,
они могут вызывать волны жары с тяжёлыми последствиями, как это было в
Европе и России в 2003 и 2010 гг. (Schubert et al., 2011), или приводить к
затяжным засухам или наводнениям (Киктев и др., 2015). 

В тропиках, наряду с Эль-Ниньо, важнейшим источником предсказуемо-
сти выступает колебание Маддена-Джулиана (КМЖ). Оно связано с переме-
щением зон интенсивной конвекции с периодом 30-60 дней и оказывает
существенное влияние на погодные условия в Северной Америке, Австралии
и Азии. Современные модели демонстрируют прогресс в прогнозировании
КМЖ с заблаговременностью до 30 дней, хотя точность прогноза сильно
зависит от фазы колебания (Cassou, 2008). В работе Куликовой и соавт. (2023)
рассматривается влияние КМЖ на атмосферные процессы в умеренных
широтах Северного полушария. На основе дисперсионного анализа авторы
делают вывод о существовании дальних связей между погодными режимами
в тропиках и в умеренных широтах с заблаговременностью около 5-7 суток,
наиболее чётко выраженных в Тихоокеанско-Североамериканском регионе и
Азии. При этом влияние КМЖ на циркуляцию в Атлантико-Европейском сек-
торе носит сложный характер и требует учёта дополнительных факторов,
таких как стратосферная циркуляция и явление Эль-Ниньо.

Дополнительные возможности для прогнозирования открывают стратос-
ферные процессы, в частности, внезапные стратосферные потепления (ВСП) и
квазидвухлетнее колебание (КДК). ВСП способны спровоцировать экстремаль-
ные похолодания в Евразии и Северной Америке с откликом в несколько
недель, тогда как КДК модулирует влияние MJO, формируя сложные каскады
климатических взаимодействий (Baggett et al., 2017). В исследовании Варгина и
соавт. (2024) успешность ансамблевых сезонных прогнозов модели ИВМ РАН
оценивалась по способности воспроизводить скорость зонального ветра в
арктической стратосфере. Результаты показали, что наиболее холодные зимние
сезоны (2010/2011 и 2019/2020 гг.), характеризовавшиеся устойчивым и холод-
ным полярным вихрем, прогнозируются значительно лучше, чем сезоны с его
ослаблением в результате ВСП (Сумерова и др., 2023).

Значимым источником предсказуемости являются также процессы взаи-
модействия суши и атмосферы. Аномалии почвенной влаги и снежного
покрова влияют на температурный режим и атмосферную циркуляцию,
потенциально усиливая засушливые условия и волны жары. Тем не менее,
точные механизмы этих связей требуют дальнейшего углублённого изучения.
(Guo et al., 2011; Hsu, Dirmeyer, 2021).

Морской лёд выступает важным компонентом климатической системы
(например, Семенов и др., 2023; Kim et al., 2025). Его присутствие ограничи-
вает потоки тепла и влаги на границе океан-атмосфера, формирует резервуар
пресной воды и благодаря высокому альбедо регулирует поступление солнеч-
ной радиации. Через механизмы связи с атмосферой состояние морского льда
влияет на траектории штормов и океаническую циркуляцию. В последние

https://method.meteorf.ru/publ/books/80_years/vilfand.pdf
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годы активно исследуется степень влияния аномалий морского льда в
Арктике на погодные условия в средних широтах. Один из предполагаемых
сценариев показывает, что в периоды аномально высокой температуры аркти-
ческой поверхности вторжения холодного арктического воздуха в средние
широты могут становиться более продолжительными из-за ослабления мери-
диональных градиентов температуры и изменения характеристик струйного
течения и циклонической активности (Семенов и др., 2017). Однако слож-
ность и многофакторность процессов, влияющих на струйные течения,
затрудняет получение однозначных доказательств этой связи, а сами меха-
низмы пока ещё недостаточно адекватно воспроизводятся современными кли-
матическими моделями.

Практическое использование «окон возможностей» в прогнозировании
требует применения инновационных подходов. Поскольку динамические
модели не всегда адекватно воспроизводят ключевые физические процессы,
широкое распространение получают статистические и гибридные методы,
которые используются в дополнение к динамическим. Результаты исследова-
ний показывают, что комбинация таких предикторов, как индексы ЭНЮК и
КМЖ (Luo et al., 2016), позволяет значительно улучшить прогнозы темпера-
туры и осадков в ряде регионов с заблаговременностью до 3-4 недель.

Особенно перспективным это направление является в области прогнози-
рования экстремальных явлений. Например, эмпирические модели, учитыва-
ющие фазы КМЖ и КДК, уже сегодня позволяют прогнозировать условия,
благоприятные для формирования атмосферных рек на западном побережье
США, с заблаговременностью до 5 недель. Анализ циркуляционных режимов,
в свою очередь, помогает уточнить оценку рисков волн жары и засух за
несколько недель до их наступления.

Яркой иллюстрацией комплексного подхода к прогнозированию служит
исследование Dunstone et al. (2023), посвящённое анализу причин катастро-
фических наводнений в Пакистане в 2022 году. Авторы выявили, что это
событие было вызвано уникальным сочетанием нескольких факторов: ано-
мально интенсивных муссонных осадков, усиленных феноменом Ла-Нинья,
экстремального таяния ледников из-за предшествующих волн тепла и дли-
тельного переувлажнения почвы. В данном контексте авторы выделяют два
ключевых прогностических горизонта: сезонный (1-3 месяца), на котором
возможен прогноз фоновых аномалий осадков на основе состояния океана, и
субсезонный (2-4 недели), позволяющий прогнозировать конкретные экстре-
мальные явления. Так, в сезонных прогнозах модели UK GloSea6 сигнал о
повышенной вероятности экстремальных осадков в регионе был отчётливо
виден уже за два месяца до пика наводнения. Важным выводом работы явля-
ется подтверждение значительной роли антропогенного изменения климата,
которое увеличило влагоёмкость атмосферы и интенсифицировало таяние
ледников, тем самым усугубив масштабы катастрофы.
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Компоненты системы сезонного прогнозирования

Современная система сезонного прогнозирования представляет собой
технологически сложный конвейер, обеспечивающий генерацию, обработку и
распространение климатических прогнозов (Куликова и др., 2024а,б). Её
методологический фундамент базируется на двух взаимодополняющих ком-
понентах, связанных с расчетом оперативных и ретроспективных прогнозов.
Оперативное прогнозирование реализуется посредством инициализации гло-
бальных климатических моделей данными наблюдений через системы усвое-
ния разнородных типов данных. Данный процесс характеризуется высокой
вычислительной емкостью и опирается на глобальную инфраструктуру
обмена метеорологической информацией, координируемую Всемирной мете-
орологической организацией. Используя в качестве начальных условий дан-
ные реанализов за прошлые периоды, ретроспективное прогнозирование
выполняет две методологически важные функции: верификацию прогности-
ческой системы через сравнение с архивом наблюдений и создание эмпириче-
ской базы для калибровки оперативных прогнозов и устранения
систематических ошибок моделей. Для обеспечения репрезентативности
выборки, охватывающей различные климатические режимы, рекомендуемый
временной горизонт ретроспективных экспериментов составляет не менее 30
лет. Ключевое значение при анализе ретроспективных прогнозов придается
методам кросс-валидации, которые минимизируют риск переобучения модели
и обеспечивают статистически объективную оценку её прогностического
потенциала.

Одним из наиболее эффективных подходов в современной практике
стало использование мультимодельных ансамблей. Комбинирование прогно-
зов от нескольких независимых моделей позволяет повысить надёжность и
снизить влияние систематических ошибок, присущих каждой из них в отдель-
ности (Doblas-Reyes et al., 2013; Vitart et al., 2017; Kirtman et al., 2014). Показа-
тельно, что простое усреднение результатов зачастую оказывается более
эффективным, чем сложное взвешивание моделей (Крыжов, 2012; Brajard et
al., 2023), особенно при ограниченной длине рядов ретроспективных данных. 

Современный этап развития систем сезонного прогнозирования харак-
теризуется переходом к созданию специализированных продуктов, адаптиро-
ванных к отраслевым потребностям. Данное направление предполагает
разработку прогнозов не только стандартных метеорологических параметров,
но и специализированных величин, включая, например, частоту и интенсив-
ность экстремальных гидрометеорологических явлений, повторяемость дней
с превышением пороговых значений параметров, даты наступления агрокли-
матических сезонов, расчет специализированных индексов (засушливости,
пожароопасности) и прочее. Особую практическую значимость в сельскохо-
зяйственном секторе приобретают прогнозы, ориентированные на биоклима-
тические показатели  пороговые суммы осадков за вегетационный период и
эффективные температуры, определяющие фенологическое развитие конкрет-
ных сельскохозяйственных культур.
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Зачастую потребители нуждаются в более подробной прогностической
информации. Методологической основой пространственной детализации
прогнозов выступают технологии даунскейлинга, реализуемые через два вза-
имодополняющих подхода. Статистический даунскейлинг, основанный на
установлении устойчивых связей между крупномасштабными предикторами
и локальными климатическими характеристиками (Вильфанд и др., 2024,
Тищенко и др., 2016) сохраняет широкую применимость благодаря своей
вычислительной эффективности, хотя и обладает ограниченной физической
интерпретацией. В отличие от него динамический даунскейлинг, осуществля-
емый через каскадное вложение региональных климатических моделей высо-
кого пространственного разрешения в глобальные модели, позволяет
воспроизводить влияние мезомасштабных физико-географических факторов
 орографии, неоднородности подстилающей поверхности и береговых
линий   на формирование региональных климатических условий.

Верификация прогнозов представляет собой обязательный компонент
системы, включающий оценку успешности ретроспективных прогнозов, а
также мониторинг качества оперативных прогнозов. Всемирная метеорологи-
ческая организация разработала методические рекомендации, позволяющие
всесторонне оценивать качество вероятностных и детерминистских прогно-
зов через систему критериев качества (WMO-No. 1246). Главное место в этой
системе занимает концепция "разрешающей способности" прогноза, то есть
его умение различать вероятности в зависимости от ожидаемых климатиче-
ских аномалий. Практическая оценка этого параметра выражается с помощью
построения ROC-кривых, где анализируется соотношение между долей пра-
вильных предупреждений и частотой ложных тревог. Идеальный прогноз
демонстрирует площадь под ROC-кривой, близкую к 1.0, тогда как значение
0.5 соответствует отсутствию прогностического сигнала. В реальных усло-
виях хорошим результатом считается показатель порядка 0.7-0.8, что свиде-
тельствует о превосходстве методического прогноза над климатическим
прогнозом. Особую сложность представляет оценка "надежности" прогнозов,
требующая сравнения прогнозируемых вероятностей с фактической частотой
наступления событий. Для этого в качестве критерия используются специаль-
ные диаграммы надежности, где систематические отклонения от диагонали
указывают на необходимость калибровки прогностической модели. Одновре-
менно анализируется степень отклонения аномалий от климатических значе-
ний, поскольку именно этот параметр определяет практическую полезность
для конечных пользователей. Прогнозы, которые слишком сосредоточены на
средних значениях, хоть и демонстрируют более высокую надежность, могут
быть малоинформативными для принятия решений. Особое внимание уделя-
ется учёту неопределённости, обусловленной ограниченным объёмом стати-
стических данных. Современные методы ресэмплинга, такие как бутстреп
анализ, позволяют построить доверительные интервалы для всех ключевых
показателей качества.
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Глобальная прогностическая инфраструктура 
в системе сезонного прогнозирования

Всемирная метеорологическая организация создала комплексную
инфраструктуру для поддержки доступа к данным сезонного прогнозирова-
ния, которая представляет собой многоуровневую систему взаимодействую-
щих центров и механизмов обмена данными (WMO-No. 1246, 2020). Основу
этой системы составляют Глобальные центры долгосрочных прогнозов
(ГЦДП), которые в настоящее время включают 15 специализированных
учреждений по всему миру (табл.1). 

Таблица 1. Перечень функционирующих Глобальных центров долгосрочных прогнозов

Table 1. List of operational Global Producing Centres for Long-Range Forecasts

• Beijing: China Meteorological
Administration (CMA) / Bejing Climate
Center (BCC)
• Center for Weather Forecasts and
Climate Studies (CPTEC) / National
Institute for Space Research (INPE),
Brazil
• Euro-Mediterranean Center on Climate
Change (CMCC)
• European Centre for Medium-Range
Weather Forecasts (ECMWF)
• Exeter: Met Office, United Kingdom
• Melbourne: Bureau of Meteorology
(BOM), Australia
• Montreal: Meteorological Service of
Canada (MSC)
• Moscow: Hydrometeorological Centre
of Russia (RHMC)
• Offenbach: Deutscher Wetterdienst
(DWD)
• Pretoria: South African Weather
Services (SAWS)
• Pune: India Meteorological
Department (IMD)
• Seoul: Korea Meteorological
Administration (KMA)
• Tokyo: Japan Meteorological Agency
(JMA) / Tokyo Climate Centre (TCC)

• Пекин: Китайское метеорологиче-
ское управление (CMA) / Пекинский
климатический центр (BCC)
• Бразилия: Центр прогнозирования
погоды и климатических исследова-
ний (CPTEC) / Национальный инсти-
тут космических исследований (INPE)
• Италия: Евро-Средиземноморский
центр по изменению климата (CMCC)
• Европа: Европейский центр средне-
срочных прогнозов погоды (ECMWF)
• Эксетер (Великобритания): Метео-
рологическое бюро (Met Office)
• Мельбурн: Бюро метеорологии
(BOM), Австралия
• Монреаль: Метеорологическая
служба Канады (MSC)
• Москва: Гидрометеорологический
научно-исследовательский центр
Российской Федерации (RHMC)
• Оффенбах: Немецкая метеорологи-
ческая служба (DWD)
• Претория: Метеорологическая
служба Южной Африки (SAWS)
• Пуне: Индийская метеорологиче-
ская служба (IMD)
• Сеул: Корейская метеорологиче-
ская администрация (KMA)
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Продолжение таблицы 1

Гидрометцентр России на базе модели ПЛАВ выполняет обязательства
ГЦДП и вносит свой вклад в предоставлении доступа к глобальным сезонным
прогнозам на мировом уровне.

ГЦДП ежемесячно выпускают в оперативном режиме глобальные сезон-
ные прогнозы с использованием современных моделей земной системы и
передают данные в стандартизированных форматах, обеспечивая совмести-
мость и сравнимость результатов. Каждый ГЦДП обязан поддерживать опре-
деленный уровень качества и расчет ретроспективных прогнозов за период не
менее 15 лет, что позволяет оценивать и постоянно улучшать качество про-
гностических систем.

Центральным элементом инфраструктуры является Ведущий центр
мультимодельных ансамблей долгосрочных прогнозов (LC-LRFMME), распо-
ложенный в г. Тэджоне (Республика Корея). Он играет ключевую роль в кон-
солидации данных от различных Глобальных центров долгосрочного
прогнозирования и координируется Корейской метеорологической админи-
страцией и Национальным управлением океанических и атмосферных иссле-
дований США (NOAA).

На основе получаемых прогнозов центр ежемесячно формирует согла-
сованный мультимодельный ансамбль, что существенно повышает надеж-
ность скомплексированного прогноза за счет минимизации систематических
погрешностей отдельных моделей. 

Еще одним ключевым элементом деятельности ВМО в области глобаль-
ного сезонного прогнозирования является «Сезонный климатический бюлле-

• Toulouse: Météo-France
• Washington: Climate Prediction Center 
(CPC) / National Oceanic and Atmo-
spheric Administration (NOAA), United 
States of America
• Seoul: Korea Meteorological 
Administration (KMA)
• Tokyo: Japan Meteorological Agency 
(JMA) / Tokyo Climate Centre (TCC)
• Toulouse: Météo-France
• Washington: Climate Prediction Center 
(CPC) / National Oceanic and Atmo-
spheric Administration (NOAA), United 
States of America

• Токио: Метеорологическое управ-
ление Японии (JMA) / Токийский 
климатический центр (TCC)
• Тулуза: Météo-France
• Вашингтон: Центр климатических 
прогнозов (CPC) / Национальное 
управление океанических и атмос-
ферных исследований (NOAA), США
• Пуне: Индийская метеорологиче-
ская служба (IMD)
• Сеул: Корейская метеорологиче-
ская администрация (KMA)
• Токио: Метеорологическое управ-
ление Японии (JMA) / Токийский 
климатический центр (TCC)
• Тулуза: Météo-France
• Вашингтон: Центр климатических 
прогнозов (CPC) / Национальное 
управление океанических и атмос-
ферных исследований (NOAA), США
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тень» (Global Seasonal Climate Update). Этот сводный документ объединяет
прогностические данные и анализ текущего состояния климатической
системы. Бюллетень предоставляет комплексную картину состояния климати-
ческих условий для принятия решений как на глобальном, так и на региональ-
ном уровнях.

На региональном уровне работа Климатической информационной
системы ВМО обеспечивается Региональными климатическими центрами
(РКЦ). РКЦ специализируются на адаптации глобальных прогнозов к мест-
ным условиям, играя центральную роль в «каскадном» прогностическом про-
цессе  последовательной детализации информации от глобальных
масштабов до региональных. Функционал РКЦ выходит далеко за рамки опе-
ративной прогностической деятельности. В их обязанности входит также
укрепление потенциала национальных метеорологических служб, разработка
отраслевых климатических продуктов и проведение сессий региональных
климатических форумов. Наибольшее значение эта работа приобретает в
регионах с ограниченными возможностями, где РКЦ фактически берут на
себя роль центрального узла, обеспечивающего доступ к диагностической и
прогностической информации. Северо-Евразийский климатический центр
выполняет свои международные обязательства как РКЦ WMO для террито-
рии Северной Евразии с 2013 г., обеспечивая метеорологические службы
стран СНГ климатической информацией и услугами (Хан, 2017).

Важнейшим инструментом, который СЕАКЦ и другие РКЦ используют
для укрепления потенциала метеослужб в зоне своей ответственности, явля-
ются Региональные климатические форумы (РКОФ). Эти мероприятия соз-
дают уникальную платформу для продуктивного диалога между
поставщиками и потребителями климатических прогнозов. Сессии РКОФ
проводятся на регулярной основе и приурочены к началу ключевых для поль-
зователей сезонов, обеспечивая продуктивный диалог на одной площадке
ведущих специалистов разного профиля.

Исторически сложилось, что в основе прогностических оценок РКОФ
лежали преимущественно экспертные заключения, формируемые в процессе
консенсусных обсуждений. Однако современный этап развития климатиче-
ской науки диктует новые стандарты: на смену субъективным подходам при-
ходят объективные методы, основанные на мультимодельном ансамблевом
прогнозировании.

Такой эволюционный переход приносит ощутимые преимущества 
повышается объективность и обоснованность прогнозов, обеспечивается про-
зрачность используемых методик, усовершенствуется процесс воспроизводи-
мости результатов и укрепляется доверие со стороны конечных
пользователей.

Северо-Евразийский климатический центр с мая 2011 года регулярно
проводит Региональные климатические форумы для стран СНГ (Хан, 2017),
которые в номенклатуре Всемирной метеорологической организации (ВМО)
получили название NEACOF (СЕАКОФ). СЕАКОФ объединяют усилия уче-
ных и специалистов в области мониторинга и прогнозирования климатиче-
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ской изменчивости, что позволяет не только глубже понимать текущее
состояние климатической системы, но и разрабатывать более надежные
сезонные прогнозы по территории Северной Евразии. СЕАКОФ проводятся
дважды в год в разных форматах: осенью мероприятия проходят в очном
форме, а весной  в виртуальном режиме с использованием интернет-ресур-
сов. Особую ценность СЕАКОФ придает участие не только экспертов, конеч-
ных потребителей климатической информации, но и представителей научного
сообщества. Такой диалог между разработчиками, поставщиками и пользова-
телями консенсусных прогнозов позволяет совместно разрабатывать страте-
гии эффективного применения климатической информации и адаптировать их
под конкретные нужды социально-экономического сектора. Благодаря такому
комплексному подходу СЕАКОФ играет важную роль в развитии региональ-
ного сотрудничества и совершенствовании системы климатического прогно-
зирования на пространстве СНГ, обеспечивая более качественное и
ориентированное использование климатической информации.

Параллельно с официальной инфраструктурой климатического обслу-
живания Всемирной метеорологической организации развивается ряд автори-
тетных альтернативных инициатив по системам сезонного прогнозирования.
Эти инициативы, часто являющиеся результатом научно-практического
сотрудничества, дополняют и обогащают глобальную прогностическую
инфраструктуру. Ярким примером служит Азиатско-Тихоокеанский климати-
ческий центр (АТКЦ) в г. Пусане (Республика Корея), который разработал
уникальную систему мультимодельного ансамблевого прогнозирования на
глобальном и региональном уровнях. Помимо стандартных прогнозов, Центр
предлагает специализированные сервисы в онлайн режиме, такие как оценка
пожарной опасности и расчет климатических экстремальных индексов. Важ-
ной частью миссии АТКЦ является поддержка национальных метеорологиче-
ских служб развивающихся стран путем проведения обучения и оказания
технической помощи. Значительный вклад в работу этого консорциума вносят
и российские учреждения: Гидрометцентр России и Главная геофизическая
обсерватория (ГГО) на регулярной основе предоставляют сезонные прогнозы
в АТКЦ, рассчитываемые по моделям ПЛАВ и ГГО. 

В Европе Служба изменения климата Copernicus (C3S) консолидирует
ведущие европейские климатические модели в мультимодельный ансамбль,
выпуская не только стандартные сезонные прогнозы, но и отраслевые клима-
тические продукты для различных секторов экономики, и предоставляя плат-
форму для доступа к климатическим данным и инструментам визуализации.

На американском континенте важную функцию выполняет Североаме-
риканский мультимодельный ансамбль (NMME), объединяющий прогности-
ческие системы США и Канады. Его ключевой особенностью является
использование единого протокола всеми участниками, что обеспечивает
совместимость данных и открывает широкие возможности для сравнитель-
ного анализа эволюции качества различных моделей.

Таким образом, альтернативные системы сезонного прогнозирования не
подменяют, а эффективно дополняют официальную структуру климатиче-
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ского обслуживания ВМО. Их существование стимулирует здоровую конку-
ренцию, обмен передовым опытом и, в конечном итоге, способствует
прогрессу во всей области климатического прогнозирования. Для многих
стран эти ресурсы представляют собой бесценную возможность получить
доступ к современным прогностическим технологиям, минимизируя затраты
на создание собственной вычислительной инфраструктуры.

Продукты сезонного прогнозирования: 
форматы представления и интерпретация

Современные системы сезонного прогнозирования предлагают разноо-
бразные форматы представления климатической информации, каждый из
которых имеет свои преимущества и области применения. Основой для всех
видов прогностической продукции служит понятие климатической нормы 
многолетнего среднего состояния атмосферы, относительно которого опреде-
ляются аномалии. Выбор базового периода для вычисления нормы (обычно
30-летнего) имеет принципиальное значение, особенно в условиях меняюще-
гося климата. Уточненные нормы, охватывающие последние годы, лучше
отражают текущие климатические тенденции. 

Детерминированные сезонные прогнозы, представляемые в виде анома-
лий ансамблевого среднего, дают общее представление о наиболее вероятном
сценарии развития климатических условий. Однако такой формат не отражает
всей полноты неопределенности, присущей долгосрочным прогнозам. Поэ-
тому в современной практике предпочтение отдается вероятностным формам,
которые количественно оценивают шансы реализации различных сценариев.
Наиболее распространенным подходом является представление вероятностей
для каждой из терцильных категорий, что позволяет пользователям оценить
степень отклонения от климатической нормы. 

Однако, по мнению ряда исследователей (Hansen et al., 2022), наряду с
преимуществами данный подход имеет и ряд существенных ограничений.
Ключевым из них является недостаточный учет локальных условий: про-
гнозы, составляемые для крупных регионов, не отвечают потребностям
конечных пользователей, которым необходимы данные с более высоким про-
странственным разрешением. Во-вторых, в нём используются искусственные
границы  деление на терцили (33-й и 67-й процентили) часто не совпадает с
реальными пороговыми значениями для практических задач. Кроме того,
понятие «нормы» пользователи могут трактовать по-разному. И наконец,
такой подход не учитывает успешность прогноза, из-за чего остаётся неяс-
ным, насколько можно доверять данным, что ведёт к принятию неоптималь-
ных решений.

В качестве альтернативы авторы предлагают новый подход под назва-
нием Flexible Forecast («гибкий прогноз»), реализованный в онлайн-плат-
форме. Ключевое его преимущество заключается в отображении полного
распределения вероятностей вместо трёх упрощённых категорий, возможно-
стью выбора любых пороговых значений, значимых для конкретного пользо-
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вателя. Предусмотрена опция сравнения прогноза с историческими данными,
что помогает оценить, насколько текущие крупномасштабные циркуляцион-
ные условия отличаются от обычных.

Особое внимание уделяется визуализации данных  используются инте-
рактивные картографические интерфейсы, позволяющие пользователям полу-
чать информацию для конкретных точек или регионов, сравнивать различные
сценарии и анализировать исторические аналоги. 

Современная система представления 
сезонных климатических прогнозов на платформе СЕАКЦ

В настоящее время Северо-Евразийский климатический центр предла-
гает комплексную систему доступа к сезонным климатическим прогнозам
через свои вебресурсы (https://seakc.meteoinfo.ru/ru/). 

Основу прогностической системы составляют три российские  модели:
1. Модель Земной системы ИВМ РАН (INM-CM).
2. Прогностическая модель Гидрометцентра России (ПЛАВ).
3. Прогностическая модель Главной геофизической обсерватории (ГГО).
Мультимодельный подход позволяет пользователям проводить сравни-

тельный анализ прогнозов, оценивать степень согласованности между раз-
ными моделями и формировать более обоснованные выводы во время
анализа. 

Технологическая платформа СЕАКЦ реализована на современной веб-
архитектуре, обеспечивающей сбор и актуализацию прогностических дан-
ных, удобный интерактивный интерфейс для работы с прогнозами и хорошую
производительность при обработке запросов.

Ядром системы является регулярный процесс обновления данных.
Пользовательский интерфейс предлагает интуитивно понятную систему
фильтров для выбора нужных параметров прогноза. С помощью выпадающих
меню пользователь может задать географический регион (Евразия, Европа,
Азия, Арктика или глобальный масштаб), метеорологические параметры
(температура воздуха, осадки, геопотенциал и др.), временной диапазон
(текущий месяц, сезонные прогнозы с различной заблаговременностью), а
Техническая реализация системы основана на современных веб-технологиях
динамического формирования запросов и адаптивную верстку для удобного
просмотра на различных устройствах.

Доступ к прогностической информации осуществляется через разделы
веб-сайта СЕАКЦ, включая:

• раздел сезонных прогнозов;
• раздел внутрисезонных прогнозов;
• раздел экстремальных явлений;
• раздел десятилетних прогнозов.
Пользователям также доступны специализированные прогностические

продукты, такие как:
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• индексы атмосферной циркуляции, отражающие крупномасштабные
процессы в атмосфере;

• индекс засушливости Педя и SPI  важные показатели для агроклима-
тического прогнозирования;

• консенсусные прогнозы и др.
 Эта система представляет собой важный инструмент для специалистов

метеослужб стран СНГ, представителей сельского хозяйства и других отрас-
лей, чья деятельность зависит от климатических условий. Сайт СЕАКЦ про-
должает активно развиваться. В ближайших планах перед разработчиками
стоит задача включения дополнительных функций обработки информации,
расширения набора рассчитываемых индексов, улучшения алгоритмов визуа-
лизации данных. Дальнейшее развитие платформы СЕАКЦ будет способство-
вать повышению надежности и полезности долгосрочных прогнозов для
различных категорий пользователей.

Научные исследования 
в поддержку оперативной деятельности на примере СЕАКЦ

Современные методы сезонного прогнозирования переживают этап
активного развития благодаря внедрению новых технологий и научных под-
ходов, которые существенно повышают их надежность и практическую цен-
ность. Ключевым фактором успеха в этой области стала тесная интеграция
фундаментальных исследований с оперативной деятельностью. 

Долгое время в России отсутствовала технология сверхдолгосрочного
динамического прогнозирования за пределами сезонного масштаба. Един-
ственная климатическая модель, разработанная в Институте вычислительной
математики РАН, хотя и позволяла учитывать факторы внутренней и внешней
изменчивости с заданием граничных условий, была ограничена в своих воз-
можностях прогнозированием классических климатических сценариев по
формату CMIP экспериментов. Ситуация изменилась благодаря поддержке
важнейшего инновационного проекта государственного значения «Единая
национальная система мониторинга климатически активных веществ», в рам-
ках которого была поставлена задача по адаптации этой модели для оператив-
ного долгосрочного и сверхдолгосрочного прогнозирования метеорологи-
ческих параметров.

Реализация этого проекта потребовала решения целого комплекса науч-
ных и технических задач. Особое значение имела разработка технологии
выпуска гидрометеорологических прогнозов на периоды от сезона до
нескольких лет  эта наукоемкая задача имеет стратегическое значение для
многих отраслей национальной экономики. Знаковым достижением стало
создание в 2023 году системы глобального ансамблевого сезонного прогноза
на базе климатической модели INM-CM5, разработанной совместно Гидро-
метцентром России и ИВМ РАН. После успешных испытаний эта система
была рекомендована к внедрению в оперативную практику (Хан и др., 2023,
2024).



Фундаментальная и прикладная климатология, т. 11, № 4, 2025
Fundamental and Applied Climatology, v. 11, no. 4, 2025

485

Параллельно велась работа по созданию более совершенной версии
модели  INM-CM6, которая отличается повышенным пространственным
разрешением, улучшенным описанием физических процессов и оптимизиро-
ванной вычислительной эффективностью. Сравнительный анализ двух вер-
сий моделей показывает заметный прогресс: INM-CM6 демонстрирует более
высокую точность прогнозов по ключевым параметрам, хотя и сохраняет
некоторые проблемы, особенно в прогнозировании давления на уровне моря
и экстремальных осадков.

Проведенные испытания в 2022-2024 годах, включая ретроспективный
анализ за 30-летний период, подтвердили перспективность нового подхода.
Однако для полного раскрытия потенциала системы предстоит решить ряд
задач по минимизации систематических ошибок и дальнейшему совершен-
ствованию параметризаций. Развитие этих технологий открывает новые воз-
можности для повышения качества прогнозов, что особенно важно в
условиях наблюдаемых климатических изменений.

Прогнозирование климатических воздействий: 
интеграция методологии ESCAP 

и данных Северо-Евразийского климатического центра

Особое внимание уделяется оценке экономической и социальной полез-
ности сезонных прогнозов, которая зависит также от способности пользовате-
лей эффективно использовать предоставляемую информацию (Емелина и др.
2023). Исследования показывают, что даже прогнозы с умеренным качеством
могут приносить значительную пользу, если они своевременно поступают и
правильно интерпретируются. В этом контексте важную роль играют про-
граммы обучения пользователей, которые помогают преодолеть разрыв
между поставщиками климатической информации и конечными потребите-
лями.

Перспективные направления развития сезонного прогнозирования
включают интеграцию методов искусственного интеллекта для улучшения
прогностических моделей и постобработки, разработку систем "прогнозиро-
вания на основе воздействий" (impact-based forecasting), которые напрямую
оценивают вероятные последствия климатических аномалий. Эти инновации
постепенно трансформируют сезонное прогнозирование из чисто научной
дисциплины в важнейший инструмент адаптации к изменению климата и
управления климатическими рисками.

Экономическая и социальная комиссия ООН для Азии и Тихого океана
(ESCAP) разработала систему прогнозирования на основе воздействий
(Impact-Based Forecasting) (ESCAP & WMO, 2021), которая кардинально
меняет парадигму от простого прогноза климатических условий на сезон к
комплексной оценке их социально-экономических последствий.

Особую значимость этой системе придает стратегическое партнерство
ESCAP с Северо-Евразийским климатическим центром, позволяющее созда-
вать прикладные прогностические продукты для обширного региона Север-
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ной Евразии. В основе сотрудничества лежит интеграция данных Северо-
Евразийского климатического форума в аналитическую платформу ESCAP.

Этот опыт наглядно показывает, как партнерство между международ-
ными организациями и региональными климатическими центрами позволяет
создавать принципиально новые инструменты для адаптации к изменению
климата.

Заключение

Современное развитие сезонного климатического прогнозирования
переживает период качественной трансформации, обусловленной стреми-
тельным научно-технологическим прогрессом. В результате комплексного
анализа можно констатировать, что ключевым вектором развития стало углу-
бленное понимание физических процессов климатической системы, достиг-
нутое благодаря совершенствованию описания физических процессов в
моделях и внедрению принципиально новых вычислительных подходов. Осо-
бое значение приобретает интеграция передовых технологий обработки дан-
ных, где сочетание традиционных численных методов с алгоритмами
машинного обучения позволяет существенно повысить уровень прогностиче-
ских оценок. 

Важнейшим достижением последнего десятилетия стало формирование
мультимодельных ансамблей, объединяющих прогностические продукты
ведущих мировых центров. Такой подход не только снижает неопределен-
ность прогнозов, но и создает основу для разработки специализированных
климатических сервисов, ориентированных на конкретные сектора эконо-
мики. Примечательно, что особую роль в этом процессе играют региональные
центры, такие как Северо  Евразийский климатический центр, которые
адаптируют глобальные прогностические продукты к местным условиям,
учитывая специфику региональных климатических процессов.

Перспективы дальнейшего развития тесно связаны с расширением вре-
менных горизонтов прогнозирования, где особый интерес представляют суб-
сезонные (2-6 недель) и межгодовые (1-10 лет) масштабы. Реализация этого
потенциала требует углубленного изучения долгопериодных климатических
колебаний и их региональных проявлений, а также разработки новых методов
комбинирования прогнозов разной заблаговременности. Особую актуаль-
ность приобретает совершенствование систем верификации, позволяющих
объективно оценивать качество прогностической продукции и выявлять
направления для дальнейшего улучшения.

Международное сотрудничество остается краеугольным камнем разви-
тия климатического прогнозирования. Укрепление партнерских связей между
глобальными и региональными центрами, обмен данными и методиками,
совместные исследовательские инициативы  все это создает основу для фор-
мирования единого мирового прогностического пространства. 

В контексте наблюдаемых климатических изменений особую ценность
приобретает практическая направленность прогностических разработок и
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создание специализированных продуктов для сельского хозяйства, энерге-
тики, водного хозяйства и других уязвимых секторов.
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